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Understanding AI, ML, Deep Learning, and Generative AI

Artificial Intelligence (AI) is the “umbrella” term for all computer methods that simulate human 
intelligence, ranging from simple programmed rules to advanced learning systems.

Machine Learning (ML) sits just below AI. Instead of being explicitly programmed for each task, ML 
systems learn to spot patterns by analyzing and practicing on lots of examples. The system’s rules 
emerge automatically by processing data rather than being written by a programmer.

Deep Learning (DL) is a type of ML. DL uses layered artificial neural networks to uncover complex 
relationships in data, such as recognizing images or speech. Thanks to huge datasets and powerful 
computers, DL models can figure out the best features on their own, without human intervention.

Generative AI is a specialised kind of Deep Learning. These models, such as large language models, can 
generate entirely new text, images, or other content by drawing on what they learned during training. 
Generative AI relies on state-of-the-art architectures (like transformers) and vast amounts of data to 
deliver fluent, creative results.



Hierarchy of AI Disciplines



AI Use Cases

AI applications can be categorised into several broad areas, each reflecting how intelligent systems are 
being incorporated into modern digital environments. 

One major area focuses on improving customer experience. In this space, AI is used to power contact 
centres, conversational assistants, personalised recommendations, identity verification, and automated 
moderation of user-generated content. These systems rely on language, vision, and pattern-recognition 
capabilities to provide faster and more accurate responses to user interaction.

Another area concentrates on augmenting human work. AI systems are used to generate text, create 
images, assist with daily tasks, produce forecasts, generate software code, and prepare analytical reports. 
These applications reduce manual effort and support employees in performing tasks that require 
synthesis of information or repetitive decision-making.



A third area involves improving business operations. AI is used in document understanding, fraud 
detection, predictive maintenance, language translation, visual inspection, and the optimisation of routine 
processes. These applications are often built by integrating pretrained models into business workflows, 
enabling organisations to automate tasks that previously required significant human effort.

A final category involves the creation of entirely new products and services that rely on capabilities made 
possible by modern AI techniques. These offerings often depend on generative or adaptive models that 
enable new forms of interaction, content creation, or decision support that traditional software could not 
previously deliver.



The Three Generations of Machine Learning
This slide explains the evolution of ML through three distinct generations.

Generation 1 is described as the era of traditional machine learning. Labeled datasets must be manually 
created, features must be engineered, and models must be trained from scratch. Performance evaluation 
is performed manually, and significant effort is required at each stage.

Generation 2 introduces deep learning, driven by the availability of large datasets and enhanced compute 
resources. Models are re-trained using neural networks, and while accuracy improves dramatically, the 
resource burden remains high. Neural architectures such as CNNs and RNNs define this era.

Generation 3 is marked by transfer learning and transformers. Large pre-trained models (GPT, BERT, etc.) 
are made available to the public. These models are trained once at enormous cost and then reused by 
millions of developers. In Generation 3, model training is no longer required for most practical 
applications. Instead, APIs are used to perform inference on pre-trained or fine-tuned models, often 
through a pay-per-use model.



Pre-trained Models
A pre-trained model is a machine learning model that has already been trained once on a very large 
collection of data before it is used for any specific task.

In the context of language, a pre-trained language model is trained on large amounts of text. During this 
training, the model is repeatedly exposed to sentences and is asked to perform tasks such as predicting 
missing words or the next token. Over time, the model learns:

● how words usually appear together,
● how sentence structure works,
● how meaning depends on context.

By the end of this training, the model does not specialise in any one task such as sentiment analysis or 
translation. Instead, it gains a general understanding of language. These pre-trained models are then 
published and shared on platforms like the Hugging Face Hub, an open source platform hosting models, 
datasets, and code repositories. 



Once a model is on the Hub, it:

● belongs to the collection of community-available models,
● can be downloaded as a model file,
● can be loaded through libraries such as transformers,
● or can be accessed via APIs provided by Hugging Face.

At this stage, the model is called a pre-trained model or base model. It is powerful, but still 
general-purpose.

Examples include models based on transformer architectures such as BERT and GPT, and many others 
hosted on Hugging Face.



Fine-tuned Models: Specialising the Base Model

A fine-tuned model is created when a pre-trained model is taken and then trained further on a smaller, 
task-specific dataset.

The key idea is:

● The pre-trained model already knows “how language works” in general.
● Fine-tuning teaches it “how this specific task works” in particular.

Sentiment analysis with IMDB

Example: “bert-base-uncased-sentiment”, fine-tuned for sentiment analysis, trained on the IMDB movie 
reviews dataset.



Stages of Fine Tuning the Base Model

1. A general BERT-based model is first pre-trained on a large corpus of English text. At this stage, it 
learns grammar, vocabulary, and general patterns of language usage.

2. This pre-trained model is then fine-tuned on the IMDB movie reviews dataset, where each review is 
labelled as positive or negative.

3. During fine-tuning, the model is shown many pairs of the form:
○ review text
○ label (positive or negative)

4. The model gradually learns what patterns in the text correspond to positive sentiment (for example, 
phrases like “amazing performance”, “highly recommended”) and what patterns correspond to 
negative sentiment (for example, “poorly written”, “waste of time”).



At the End of Fine Tuning

By the end of fine-tuning:

● The model is no longer just a general English model.
● It becomes a sentiment analysis model that is particularly 

good at judging whether a review is positive or negative.

The model performs well on product reviews, social media 
posts, and similar opinionated text. It uses its general language 
understanding plus the specific patterns learned from IMDB. 
This is a fine-tuned model.



Fine-tuning Improves Performance
The performance of a fine-tuned model is generally better than a model trained from scratch on a small 
dataset. The reasons are:

● A model trained from scratch on a small dataset (for example, only IMDB reviews) has to learn both 
language structure and sentiment patterns from the same limited data. This is difficult and often 
leads to weaker performance.

● A fine-tuned model starts in a much stronger position. It already knows language structure from its 
large-scale pre-training. The IMDB dataset then only needs to teach it how sentiment is expressed.

This combination of:

● general language capability (from pre-training), and
● task-specific understanding (from fine-tuning)

allows fine-tuned models to perform better and to learn faster than models built from scratch on the 
same small dataset.



Transfer Learning

Transfer learning refers to the reuse of knowledge gained from one learning process in another. In the 
context of transformer models, the knowledge gained during pre-training—understanding grammar, 
structure, vocabulary, and common language patterns—is transferred directly into the fine-tuning phase. 
Fine-tuning simply adjusts the model so this general knowledge becomes useful for the specialised task.

In this context:

● The pre-training phase teaches the model general language knowledge.
● The fine-tuning phase transfers that general knowledge to a new task, such as sentiment analysis 

or question answering.

The “transfer” is happening from:

● the general task of understanding text (pre-training),
● to the specific task (sentiment, QA, translation, etc.).



Applications of Transfer Learning

 A single pre-trained model can be adapted for many diverse tasks:

● a version fine-tuned for sentiment analysis,
● another version fine-tuned for question answering,
● another for summarisation,
● and so on.

Each variant inherits the general language capability from the original pre-trained model and then learns 
its specific role through targeted fine-tuning.



Example: Question Answering (distilled SQuAD model)
A model such as Distilbert-base-uncased-distilled-squad is fine-tuned for question 
answering.

The process can be understood as:

● A base DistilBERT model is pre-trained as a general language model.
● It is then fine-tuned on a question–answer dataset (SQuAD-style), where each training example 

contains:
○ a passage of text,
○ a question,
○ and the correct answer span within the passage.

● When a new passage and question are provided, the model uses:
○ its general understanding of language,
○ plus its specialised training from SQuAD-style fine-tuning,

to select a likely answer span. Again, the knowledge learned in pre-training has been transferred to a more 
specific question-answering task.



Pre-Trained vs Fine-Tuned Models
The contrast between pre-trained and fine-tuned models is structured around three dimensions:

Training Data:
Pre-trained models are trained on very large and diverse corpora. Their learning captures general patterns. 
Fine-tuned models are trained on narrower datasets related to specific tasks or domains. This 
specialization enables improved performance in narrow use cases.

A pre-trained model serves as a general base model. A fine-tuned model is tailored for a particular 
application such as sentiment analysis or domain-specific classification. The distinction is important 
when selecting a model from platforms such as Hugging Face.

Efficiency:
Pre-training is computationally expensive. Fine-tuning is far more efficient because the base knowledge is 
already present. Fine-tuning only adjusts model parameters relevant to the specialised task.



Pre-Trained vs Fine-Tuned
Fine-tuning generally improves performance because a pre-trained model already carries broad 
language knowledge learned from large text collections. When this general understanding is adjusted 
with domain-specific examples, the model develops a sharper sense of the patterns relevant to that 
task. A model trained from scratch on a small dataset does not have this advantage, so it typically 
performs worse.

Transfer learning enables this improvement. A pre-trained model that has learned grammar, vocabulary, 
and common sentence structures can be adapted to a specialised task with relatively little data. A 
practical example is sentiment analysis using an IMDB-based fine-tuned model. The general model 
understands English, while the fine-tuned version learns how positive and negative opinions are typically 
expressed in movie reviews. The same idea applies to question answering, where a model such as a 
distilled SQuAD version uses its general language knowledge and refines it with question-answer pairs 
drawn from that dataset.

Interpretability also becomes easier when fine-tuning is used. Because the model has been adjusted to a 
specific domain, its mistakes tend to reflect patterns within that domain. This makes it more 
straightforward to understand why a sentiment model misclassified a review or why a 
question-answering system selected an incorrect span from a passage.



Where These Models Live and How They Are Used

Some facts about the general purpose models:

● The Hugging Face Hub hosts models, datasets, and code.
● Models have model cards, describing:

○ what they were trained on,
○ what they should be used for,
○ their limitations,
○ and their evaluation scores.



A model such as “bert-base-uncased-sentiment”:

● lives on the Hugging Face Hub,
● can be searched and viewed through its model card,
● can be used through code such as:

from transformers import pipeline

classifier = pipeline('sentiment-analysis', model='bert-base-uncased-sentiment')

result = classifier("I love this movie!")

Here, the pipeline:

● downloads or loads the fine-tuned model,
● runs the input text through the model,
● and returns the sentiment label and a confidence score.

In this process:

● The pre-trained part of the model handles understanding the sentence structure and language.
● The fine-tuned part of the model decides whether the sentiment is positive or negative.



Interpretability in Fine-tuned Models

Interpretability becomes more manageable when a model is fine-tuned on a specific domain.

Consider the sentiment analysis case again:

● The model has been fine-tuned specifically on movie reviews from IMDB.
● When it misclassifies a review, the error can often be traced back to patterns in that domain:

○ perhaps sarcasm in a movie review,
○ or a very mixed opinion with both praise and criticism.

Because the model’s behaviour has been shaped directly by that dataset, its decisions can be analysed 
more easily in that context. The model card, which lists evaluation metrics and limitations (for example, 
poor performance on sarcasm or slang), further helps to interpret and trust or question the model’s 
outputs.



Summary

1. A pre-trained model is trained once, at large scale, to learn general language behaviour.
2. A fine-tuned model begins from this strong base and specialises in a specific task using a smaller 

labelled dataset.
3. Transfer learning is what allows the general knowledge learned in pre-training to be reused 

efficiently during fine-tuning.
4. Performance improves because fine-tuning builds on a strong foundation rather than starting from 

scratch.
5. Interpretability becomes easier because the model’s behaviour is tied to the patterns present in the 

task-specific dataset.



Questions
Choosing between training a model vs using a pre-trained API

Training a model is suitable when the task requires domain specific behaviour that cannot be met by 
existing models or when proprietary training data must be used to create a customised system. This 
approach requires labelled data, training infrastructure, and model optimisation effort.

A pre-trained API is suitable when the task matches a common pattern such as sentiment analysis, 
classification, translation, summarisation, or object detection. The model is already trained on large 
datasets and can be integrated immediately. This avoids the effort of dataset preparation, training cycles, 
monitoring, and infrastructure management. Pre-trained APIs also ensure consistent performance and 
faster development.



Questions
Q. Explaining business use cases for AI-driven systems

AI driven systems are used to enhance customer experience by providing automated agents, 
personalised recommendations, identity verification, and content moderation. They assist employees by 
generating content, producing reports, and supporting decision making. They improve business 
operations through document understanding, fraud detection, predictive maintenance, language 
translation, visual inspection, and process optimisation. AI systems also support the creation of new digital 
products that rely on capabilities such as text generation, summarisation, and intelligent search.

Q. Describing efficiency advantages of transformer-based approaches

Transformer models process input by attending to all parts of a sequence simultaneously. This allows long 
range relationships to be captured without sequential dependency. As a result, they achieve higher 
accuracy in tasks such as translation, question answering, text generation, and summarisation. Because 
the self attention mechanism scales effectively, transformers can be pre-trained on very large corpora and 
reused across many tasks. This reduces the need for repeated training and provides faster adaptation 
through fine-tuning.



Q. Reasoning about why APIs exist in modern ML pipelines

APIs provide access to pre-built intelligence without requiring model training. Modern ML pipelines rely on 
APIs because they encapsulate complex models behind stable interfaces. This allows applications to 
perform tasks such as classification, translation, vision processing, or summarisation by sending requests 
to an endpoint. It reduces development time, eliminates the need for specialised infrastructure, and 
ensures consistent performance. APIs also enable scalable usage because the service provider manages 
hardware, updates, monitoring, and optimisation of the underlying model.

Q. Discussing transfer learning or model lifecycles

Transfer learning allows knowledge learned during large scale pre-training to be reused for new tasks. A 
pre-trained model captures general language or visual patterns. Fine-tuning adjusts this model using a 
smaller, task specific dataset, producing higher accuracy than training from scratch.

The model lifecycle typically includes pre-training, fine-tuning, deployment, inference, monitoring, and 
periodic updates. Pre-training is resource intensive and performed once. Fine-tuning adapts the model to 
specific tasks. Deployment exposes the model through APIs or pipelines. Monitoring ensures reliability, 
and updates refine the model as data or requirements evolve.



Q.2. You are working as an AI Solutions Architect for a legal firm that wants to deploy an AI 

chatbot to assist employees in answering questions from internal legal contracts, compliance 

documents, and HR policies. Describe two approaches you could use to implement this solution 

using APIs. For each approach, mention the APIs or services you would consider and explain any 

assumptions involved. Code is not required. [6 marks]

Two Approaches for Implementing the AI Chatbot Using APIs

A legal firm requires a chatbot capable of answering employee questions based on internal legal 
contracts, compliance documents, and HR policies. This can be achieved using API-based AI services 
without training models from scratch. Two suitable approaches are described below.



Approach 1: Using Cloud-based Cognitive Services APIs

Cognitive services provide ready made language capabilities through REST APIs. These services can 
process text, extract intent, identify entities, summarise content, and answer queries. A legal chatbot can 
be implemented by integrating the firm’s documents with language understanding, search, and question 
answering APIs.

Language Services can analyse queries and identify intent and relevant terms. Document Intelligence or 
text analysis APIs can extract key clauses, obligations, and policy statements from uploaded contracts or 
policies. A question answering API can then match the employee’s question with relevant passages and 
produce a concise answer. Speech Services may also be used if voice input is required.

Assumption:
The firm is willing to store its legal documents in the secured environment of the cloud provider’s cognitive 
services, and these services support the languages, formats, and compliance requirements of the 
organisation.



Approach 2: Using Hugging Face Transformer Models Through APIs

Hugging Face provides pre-trained and fine-tuned transformer models accessible through API endpoints. 
These models include tasks such as question answering, summarisation, text classification, and 
translation. A legal chatbot can be created by selecting a transformer model fine-tuned for question 
answering and using it through the Hugging Face Inference API.

The internal documents can be converted into passages. When an employee asks a question, the chatbot 
sends the question and the relevant text segment to the API. The model identifies the answer span just as 
in standard question answering tasks. Summarisation models can also be used to simplify long policy text, 
and text classification models can help route the question to the correct document category.

Assumption:
The firm stores its legal and compliance documents in a secure internal system and uses a retrieval layer 
to send only the required text snippets to the Hugging Face API, ensuring no full documents leave the 
firm’s environment.



Conclusion

Both approaches avoid training models from scratch and rely on pre-trained, production-ready APIs. The 
first approach uses cloud cognitive services with built-in document analysis and language models, while 
the second uses transformer-based models hosted on Hugging Face. Both approaches provide scalable 
and accurate solutions for answering queries from legal and policy documents.



Q.3. A user sends the following prompt to a chatbot – "It’s not a bad suggestion, though I’m not exactly thrilled about it."

a. Write the base Python code to analyze the sentiment of this message. Use any sentiment analysis API or model of your choice. 
[2 marks] b. Based on the sentiment result, what would be an appropriate chatbot response? Justify your answer. [2 marks]

Python code for sentiment analysis

A simple sentiment analysis can be performed using a pre-trained transformer model available through 
Hugging Face:

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

text = "It’s not a bad suggestion, though I’m not exactly thrilled about it."

result = classifier(text)

print(result)

This code loads a standard sentiment analysis model and returns a label such as positive or negative with 
a confidence score.



Appropriate chatbot response with justification 

The message expresses mixed sentiment. The phrase “not a bad suggestion” indicates mild positivity, 
while “not exactly thrilled” weakens the enthusiasm. This usually results in a sentiment classification that is 
slightly positive or neutral.

An appropriate chatbot response would acknowledge the user’s hesitation and offer support, for example:

Response:
 "I understand that the suggestion seems acceptable but not exciting. Let me know what specific concerns 
you have, and I can help refine it."

Justification:
The response reflects the mild, reserved sentiment detected by the model. It recognises the user’s partial 
agreement and addresses the lack of enthusiasm by inviting clarification.



Cognitive Services

Cognitive services refer to cloud-hosted artificial intelligence capabilities that allow applications to 
perform tasks that resemble human cognitive functions. These tasks include: 

● understanding language, 
● recognising objects in images, 
● extracting meaning from speech, 
● and making recommendations. 

The central idea behind cognitive services is that powerful AI models can be used without requiring any 
expertise in training or maintaining machine learning systems. Instead, the intelligence is accessed 
through simple API calls.

These services are provided by major cloud platforms. They offer pre-built models that have already been 
trained using large datasets. Because the heavy training work has been completed in advance, developers 
can incorporate sophisticated AI behaviour into their applications immediately. The process usually 
involves sending data to a cloud endpoint and receiving the processed output in a structured format.



Nature of Cognitive Services

Cognitive services are designed to replicate abilities such as understanding, perception, and 
decision-making. They operate through cloud infrastructure, which allows them: 

● to handle large volumes of requests, 
● scale automatically, 
● and deliver consistent performance. 

This makes them suitable for production applications where reliability and availability are important.

One significant advantage of cognitive services is the reduction in development effort. Since the models 
are already trained, the user does not need to assemble datasets or configure training pipelines. The 
services expose their functionality through standard interfaces such as HTTP REST APIs or through SDKs 
for common programming languages. This enables integration into web applications, mobile applications, 
and enterprise systems.



Azure Cognitive Services

Azure provides a suite of AI services that can be accessed directly through the cloud. These services 
include pretrained models for language understanding, speech processing, vision tasks, and 
decision-making. The entire collection is built and maintained by the Azure AI and Research team. Each 
service can be accessed through REST endpoints, allowing developers to send input such as text, audio, 
or images and receive structured AI-generated output.

Common examples include text analysis, speech to text, text to speech, translation, object detection, and 
content moderation. By using these services, developers extend their applications with complex AI 
behaviour without performing any training or constructing machine learning infrastructure.



Amazon AI Services
AWS offers a broad collection of fully managed artificial intelligence services that can be invoked directly 
from the cloud. These services cover language, speech, vision, analytics, and personalisation tasks, all 
backed by pretrained models maintained by Amazon’s AI and Machine Learning teams. Each service 
exposes a simple API or REST endpoint, allowing developers to submit text, images, audio, or video and 
receive structured, machine-generated results.

Typical examples include: 

● natural language processing through Amazon Comprehend, 
● speech recognition and synthesis through Amazon Transcribe and Amazon Polly, 
● image and video analysis through Amazon Rekognition, 
● translation via Amazon Translate, 
● and content moderation using built-in Rekognition and Comprehend features. 

By adopting these services, developers add advanced AI capabilities to their applications without building, 
training, or hosting any machine learning models or infrastructure themselves.



Google Cloud Vertex AI (Gemini Models)

Google Cloud provides a suite of advanced AI services powered by its Gemini family of foundation 
models. These services can be accessed directly through Vertex AI, allowing developers to use 
pre-trained large language models, multimodal models, and specialised vision, speech, and translation 
systems. The entire platform is built and maintained by Google DeepMind and Google Cloud’s AI 
engineering teams. Each model can be invoked through REST or gRPC endpoints, where developers send 
inputs such as text, images, audio, or video and receive structured model-generated output.

Common use cases include text analysis, summarisation, translation, code generation, speech 
processing, image understanding, and multimodal reasoning. By relying on these models through Vertex 
AI’s managed interface, developers can enhance their applications with sophisticated AI capabilities 
without training their own models or setting up any machine learning infrastructure.



Categories of Cognitive Services
Cloud-based cognitive services are often grouped by the type of cognitive ability they provide.

Language services process and analyse text. They identify entities, classify text, detect sentiment, 
summarise content, and extract intent from written material.

Speech services convert speech to text, convert text to speech, translate speech, and recognise speakers.

Vision services analyse images and video. They recognise objects, identify faces, classify scenes, read 
text present in images, and process visual data for downstream tasks.

Decision services assist with making informed choices by applying trained models for anomaly detection, 
recommendation, and classification in structured data.

OpenAI-based services provide access to powerful transformer models that can generate text, analyse 
content, summarise information, or answer questions. These models are offered through REST APIs and 
require no local training.

These categories offer a wide range of ready-made functions that cover common requirements in modern 
AI applications.



Benefits of Using Cognitive Services

Cognitive services offer several important advantages. 

Complex AI behaviour can be added with minimal coding effort because the services use predefined and 
pre-trained algorithms. 

Integration is straightforward since the services are delivered through REST interfaces, which can be 
called from almost any application environment. 

The services are designed to be usable by individuals with varying levels of AI knowledge, meaning both 
experienced developers and new practitioners can incorporate intelligence into applications without 
facing complex training processes.

These services are hosted in the cloud, which means the underlying hardware, scaling, and maintenance 
are handled automatically. This is particularly helpful when applications must serve many users 
concurrently, process large volumes of text or images, or operate continuously.



Cognitive Services in the Broader AI Workflow

The availability of cloud-hosted cognitive services has changed the way AI applications are built. Instead 
of constructing models from scratch, developers rely on pretrained models and APIs that encapsulate 
powerful deep learning algorithms. This approach aligns with the larger shift toward transformer-based 
systems and foundation models, where extensive pre-training is performed once and the resulting 
capability is shared through public interfaces.

By using language, speech, vision, and decision services, a wide variety of applications can be created. 
These may include virtual assistants, content analysis systems, image classification tools, customer 
support agents, translation services, or automated document processing pipelines.



Hugging Face

Hugging Face is an open source platform that serves as a central hub for transformer models, datasets, 
and code repositories. It plays a major role in modern natural language processing because it brings 
together pre-trained models and fine-tuned models created by the community. These models can be 
downloaded, reused, and integrated into applications with minimal effort. The platform supports text, 
image, and audio tasks, making it useful for a wide variety of AI applications.

The Hub operates similarly to a version-controlled repository. Every model is stored with its files and 
documentation, and developers can track changes or contribute improvements. Alongside models, the 
platform hosts datasets and code, which creates an ecosystem where tasks, models, and data can be 
connected easily.



Tasks in Hugging Face

A task represents a specific problem an AI model is designed to solve. Hugging Face organises models by 
tasks so that developers can quickly locate models that suit their needs. Tasks describe the purpose of 
the model and the structure of the input and output.

For example, 

● Text classification involves assigning labels to text segments. Sentiment analysis is one instance, 
where text is labelled as positive or negative. 

● Named Entity Recognition identifies entities such as names, locations, and organisations within 
text. 

● Text generation creates new text based on a prompt. 
● Machine translation converts text from one language to another. 
● Question answering identifies an answer within a passage of text. 
● Summarisation produces a shorter version of a longer input while keeping the essential meaning. 

These tasks illustrate how Hugging Face categorises practical applications.



There are also tasks outside language processing. 

● Image classification assigns categories to images. 
● Object detection identifies objects within an image. 
● Speech recognition converts spoken audio into text. 

All of these tasks are represented on the Hub and supported by pre-trained and fine-tuned models.



Models in Hugging Face
A model on Hugging Face is the machine learning component used to perform a task. Models may be 
general-purpose or specifically adapted to particular problems.

A pre-trained model is trained once on a large amount of data to learn broad language patterns or visual 
features. Such a model is suitable as a starting point for many tasks because it already understands 
how language or images behave in general. 

A fine-tuned model is created when a pre-trained model is adapted further using a smaller, task-specific 
dataset. This produces better performance on that particular task than a model trained from scratch on 
a limited dataset.

Transformer-based models are widely used on Hugging Face. Examples include: 

● BERT, which is effective for tasks involving understanding text, and GPT, which performs text 
generation. 

● T5 is a text-to-text model that can be adapted for translation, summarisation, and classification. 
● DistilBERT is a smaller and faster version of BERT. 
● Other variants such as RoBERTa, XLNet, and ALBERT refine transformer architecture in different 

ways. 

The Hub stores many pre-trained and fine-tuned versions of these models.



Datasets in Hugging Face
Datasets provide the material used to train, fine-tune, or evaluate models. Hugging Face includes a wide 
range of datasets that support language, vision, and audio tasks. These datasets can be loaded directly 
through the Hugging Face library.

Examples include: 

● SQuAD for question answering, 
● GLUE for evaluating language understanding, 
● IMDB for sentiment analysis, 
● COCO for image classification and object detection, 
● and LibriSpeech for speech recognition. 

Many of these datasets are used to showcase the capabilities of pre-trained and fine-tuned models. 
Custom datasets can also be uploaded to the Hub, which allows specialised tasks to be supported by 
shared datasets.

The availability of datasets in one place simplifies experimentation, model building, and evaluation.



How Tasks, Models, and Datasets Interact

There are mainly three components which are as follows:

● Tasks define the type of problem to be solved. 
● Models perform these tasks. 
● Datasets provide the training or evaluation examples needed to teach the model. 

These three components form a cycle. A developer selects a task they want to solve, chooses an 
appropriate model from the Hub, and uses a dataset to train, fine-tune, or test the model. This structure 
makes it easy to build practical AI workflows using reusable components.



Example Workflow

● An workflow begins with selecting a task such as sentiment analysis. 
● A suitable model is then chosen from the Hugging Face Hub, for example a BERT-based model that 

has already been fine-tuned for this purpose. 
● A dataset such as IMDB may be used to fine-tune or evaluate the model. 
● Finally, the model is used to perform inference on new text, which produces a predicted sentiment. 

This sequence provides a clear path from identifying the problem to applying the model.



Model Cards

Each model on Hugging Face includes a model card. A model card is a detailed file that documents the 
model. It explains what the model is designed to do, how it was trained, the data used during fine-tuning, 
performance metrics, and known limitations.

For instance, a sentiment model fine-tuned on the IMDB dataset may have a model card that describes its 
purpose, its accuracy, its F1 score, and its limitations. These limitations may include challenges with 
languages not included in training or difficulties with informal or sarcastic text. 

Model cards help users understand where a model performs well and where it might struggle, which 
promotes responsible and informed usage.



Basics of Natural Language Processing

Natural Language Processing is the field that enables machines to interpret, analyse, and generate human 
language. It draws from computer science, linguistics, and artificial intelligence. Human communication 
takes place through words, sentences, and meanings. For a machine to work with this form of 
communication, it must process language in a form it can understand.

People interact with computers through both text and speech. A user may type a query such as a location, 
a fact, or a keyword into a search box. A user may also speak to a voice assistant and ask for music or 
information. In both cases, the system must interpret the input correctly. The machine must identify what 
the user said or wrote, recognise the structure of the message, and determine the intention behind it.



Understanding Language

When text is analysed, the system must identify several layers of meaning. 

● Syntax refers to the structure of the sentence. 
● Semantics refers to the meaning of the words in that structure. 
● Context influences how meaning is interpreted. 
● Sentiment expresses whether the text conveys a positive or negative feeling. 
● Intent describes what the user wants to achieve.

To interpret these signals, NLP systems rely on a sequence of computational steps. These steps are often 
grouped under Natural Language Understanding, where the goal is to extract meaning from the text.



Syntactic Processing

Syntactic processing focuses on the structural elements of language. It includes operations such as:

● tokenising text into words
● reducing words to their root forms through stemming or lemmatisation
● identifying the role of each word through part of speech tagging
● segmenting text into manageable units

These steps allow the system to recognise how the words in a sentence are organised.



Semantic Processing

Semantic processing deals with meaning. 

It focuses on identifying entities such as names, locations, and organisations through Named Entity 
Recognition. 

It also involves resolving meaning when words have multiple interpretations, a task known as word sense 
disambiguation. Both actions assist the system in extracting information from text and determining what 
the text is about.



Natural Language Understanding

The combination of syntactic and semantic processing produces Natural Language Understanding. This 
stage allows the system to analyse intent, identify subjects and objects in the sentence, recognise 
categories, detect mood or sentiment, and extract relevant information. As a result, the system becomes 
capable of responding appropriately to what the user expresses.



Natural Language Generation

After understanding the input, an application may need to generate a human readable response. This is 
achieved through Natural Language Generation. Several model families have been used for this purpose. 

● Markov chains create text based on word probabilities. 
● Recurrent neural networks use sequential processing of input data. 
● LSTM networks handle longer patterns in sentences. 
● Transformer models generate fluent and contextually consistent text.

Natural Language Generation is responsible for creating meaningful sentences that a user can 
understand.



Example Pipeline for NLP

In many applications, the steps appear in a pipeline. 

● Text is received. 
● It is then tokenised and processed syntactically. 
● Semantic information is extracted. 
● Named entities and relations are identified. 
● Intent is detected. Sentiment may be determined. 
● Finally, the system either performs an action or produces a suitable text response. 

This flow demonstrates how NLP transforms raw human language into structured, meaningful 
information.

The following diagram illustrates this flow in a visual manner.



Tools for NLP and NLU

Several libraries are available for performing NLP tasks. These include libraries such as the: 

● Stanford CoreNLP parser in Python, 
● NLTK for foundational tasks, 
● SpaCy for industrial NLP workflows, 
● and Apache OpenNLP for Java based text processing. 

These tools handle tokenisation, tagging, parsing, and the many steps that contribute to Natural Language 
Understanding.



NLP Components and Pipelines

Natural Language Processing systems are often organised into two broad functional areas. 

The first area involves understanding human language, and the second involves generating language that 
is meaningful and readable. 

These two areas are known as Natural Language Understanding and Natural Language Generation. 
Together, they form the core of how machines process and respond to human communication.



Natural Language Understanding

Natural Language Understanding focuses on converting unstructured human language into structured 
representations that a machine can interpret. 

When text or speech is received, the system must determine what the input contains, what the user 
intends to express, and what information is being conveyed.

The understanding process usually begins with identifying the basic units of the text. 

● Words are separated from each other. 
● Sentences may be segmented. 
● Each word is then examined so that its form and function can be identified. 
● Part of speech tagging assigns grammatical roles such as noun, verb, or adjective. 

This provides an initial structure for the rest of the analysis.



Once the structure is identified, the system moves toward 
meaning. 

● Words are reduced to their base forms when 
required(Normalisation). 

● Named Entity Recognition identifies names, places, 
organisations, or other entities in the text (NER).

● Relationships between words may be examined to 
determine who is performing an action or who is 
receiving it. 

● Ambiguity is reduced by determining which meaning 
of a word applies in the given context. 

● At this stage, the system is able to identify intent, 
detect topics, classify the text, or determine 
sentiment.

Natural Language Understanding transforms raw text into 
structured knowledge. This enables downstream tasks such 
as answering a question, retrieving information, classifying 
a document, or controlling an application through natural 
language commands.



Natural Language Generation

Natural Language Generation performs the opposite function. After a system has analysed information 
or made a decision, it may need to express the result in human language. Natural Language Generation 
creates clear and coherent sentences to convey that information.

● Several model families have been used to perform text generation. 
● Early models such as Markov chains generate text based on the probability of one word following 

another. 
● Recurrent neural networks generate sequences by processing one element at a time. 
● LSTM networks improve this process by retaining longer term patterns. 
● Transformer models generate text by attending to relationships across the entire sequence, 

producing fluent and contextually consistent output.

Natural Language Generation may produce short, direct messages or longer explanations. It may 
summarise a large document into a compact form. It may paraphrase a sentence. It may generate text 
in response to a question. The output is presented in a form that users can read and understand 
naturally.



The Flow from NLU to NLG

Many NLP applications combine both understanding and 
generation. The system begins by receiving input, which may be 
text or speech. Natural Language Understanding extracts 
structure, meaning, intent, and any relevant entities. Once the 
meaning is recognised, the application performs the required 
action. The final step produces a response through Natural 
Language Generation.

Consider a scenario where a user asks a virtual assistant a 
question. The question is first processed through Natural 
Language Understanding to identify what is being asked. The 
system retrieves the information or performs the action. It then 
constructs a readable reply through Natural Language 
Generation. This chain of steps forms a typical NLP pipeline.



Putting it all Together

NLU and NLG operate together to support a wide 
variety of applications. 

● Chatbots interpret user queries and produce 
conversational responses. 

● Question answering systems extract relevant 
answers from text and present them in 
readable form. Translation systems 
understand the structure and meaning of text 
in one language and generate a 
corresponding version in another language. 

● Sentiment systems understand the attitude 
expressed in text and generate output that 
reflects the detected emotion.



Transformer Applications in NLP

Transformer based models have become central to modern Natural Language Processing because they 
handle context more effectively than earlier approaches. They process all parts of a sentence 
simultaneously, which allows them to capture long range relationships between words and interpret subtle 
variations in meaning. As a result, transformer models are used in many core NLP tasks.

These tasks cover a wide range of real world applications, such as answering questions, detecting spam, 
identifying sentiment, translating languages, generating text, summarising documents, and paraphrasing 
content. Each task relies on the model’s ability to understand and manipulate natural language in a 
structured way.



Applications of Transformers (NLP)

Question Answering

Question answering systems identify answers to questions within a given passage or context. A user 
provides a question and the supporting text. The transformer model analyses both, determines how the 
question relates to the passage, and selects the portion that answers it. This capability is used in virtual 
assistants and knowledge retrieval systems. 

Spam Detection

Spam detection identifies unwanted or harmful messages in communication systems such as email or 
messaging platforms. Transformer models examine the content of a message, recognise suspicious 
patterns, and classify the message accordingly. The model’s understanding of text structure, intent, and 
phrasing allows it to distinguish between legitimate and unwanted messages.

Sentiment Analysis

Sentiment analysis, also known as opinion mining, evaluates whether a piece of text expresses a positive, 
negative, or neutral feeling. Transformer models identify the tone and emotional cues present in the text. 
These cues may include descriptive phrases, expressions of approval, complaints, or other markers of 
opinion. Sentiment analysis is used in product reviews, customer feedback, and social media monitoring.



Machine Translation

Machine translation converts text or speech from one natural language to another. Transformer 
models are particularly effective in this task because they process sequences while attending to the 
meaning of each word in context. As a result, the translated text is more fluent and captures the 
original meaning accurately. This has become a standard approach in multilingual applications.

Text Generation

Text generation produces new text based on user input. A prompt is given, and the transformer 
model continues the text or creates new sentences that follow logically from the prompt. The 
generated output aligns with the structure and style of the input. This ability is used in creative 
writing support, chat systems, and content creation tools.

Text Summarisation, Paraphrasing, and Error Correction

Transformers are also used in summarisation. A long passage can be condensed into a 
shorter version while preserving its key meaning. This is helpful when handling lengthy 
documents or articles. Paraphrasing transforms a sentence into an alternative form that 
conveys the same meaning. Grammatical error correction identifies errors in text and 
produces a corrected version. These applications appear in writing assistance tools.



Computer Vision APIs

Computer Vision APIs provide ready made capabilities for analysing images and videos. These APIs allow 
applications to: 

● detect objects, 
● recognise faces, 
● classify images, 
● or extract features without the need to train models. 

The intelligence is accessed through high level interfaces, which return structured output such as 
predicted labels, bounding boxes, or descriptive information about the visual content.

Cloud platforms expose computer vision features as services that can be called using REST interfaces or 
SDKs. These capabilities include object detection, face recognition, image classification, feature 
extraction, image restoration, object tracking, and scene reconstruction. Such tasks form the foundation 
of many modern applications that rely on visual analysis.



Key Computer Vision Tasks

Object detection identifies and localises objects within an image or video. Face recognition identifies 
individual faces and is used in authentication or security systems. Feature extraction identifies patterns 
that distinguish one object from another. Image classification recognises the primary category of an 
image. Image restoration improves clarity or reconstructs missing portions of an image. Object tracking 
follows movement across video frames. Scene reconstruction produces a three dimensional structure 
using multiple images.

Each of these abilities is made available through Computer Vision APIs that accept an image and return 
analysis results.



Example of a Real Computer Vision API
A practical API example appears in the image classification demonstration using a Hugging Face transformer model. 
The API can load a model for classification and process an image directly through a URL. The following code 
illustrates a working Computer Vision API call:

from transformers import pipeline

# Load the image classification pipeline

image_classifier = pipeline("image-classification",model="facebook/deit-base-distilled-patch16-224")

# Use a new image URL

url = "https://upload.wikimedia.org/wikipedia/commons/9/9a/Pug_600.jpg"

# Perform image classification using the URL directly

result = image_classifier(url)

# Print the result

print(result)

The model processes the image hosted at the given URL and returns predictions indicating the most likely classes. 


