4

API Driven Cloud Native Solution ‘
Notes

Pre-trained Models, Fine-tuned Models, and Transfer Learning
Lesson 8

Understanding Al, ML, Deep Learning, and Generative Al

Artificial Intelligence (Al) is the “umbrella” term for all computer methods that simulate human
intelligence, ranging from simple programmed rules to advanced learning systems.

Machine Learning (ML) sits just below Al. Instead of being explicitly programmed for each task, ML
systems learn to spot patterns by analyzing and practicing on lots of examples. The system’s rules
emerge automatically by processing data rather than being written by a programmer.

Deep Learning (DL) is a type of ML. DL uses layered artificial neural networks to uncover complex
relationships in data, such as recognizing images or speech. Thanks to huge datasets and powerful
computers, DL models can figure out the best features on their own, without human intervention.

Generative Al is a specialised kind of Deep Learning. These models, such as large language models, can
generate entirely new text, images, or other content by drawing on what they learned
Generative Al relies on state-of-the-art architectures (like transformers) and vast
deliver fluent, creative results.

Hierarchy of Al Disciplines

Artificial Intelligence (Al)
Broadest layer: any technique that enables machines
to mimic aspects of human intelligence.

Machine Learning (ML)
Subset of Al: systems learn patterns from data rather
than relying on manually coded rules.

A4

Deep Learning (DL)
Subset of ML: neural-network-based methods that learn
complex feature hierarchies automatically.

l

Generative Al
Subset of DL: foundation-model-based systems capable
of generating text, images, audio, and more.

Al Use Cases

Al applications can be categorised into several broad areas, each reflecting how intelligent systems are
being incorporated into modern digital environments.

One major area focuses on improving customer experience. In this space, Al is used to power contact
centres, conversational assistants, personalised recommendations, identity verification, and automated
moderation of user-generated content. These systems rely on language, vision, and pattern-recognition
capabilities to provide faster and more accurate responses to user interaction.

Another area concentrates on augmenting human work. Al systems are used to generate text, create
images, assist with daily tasks, produce forecasts, generate software code, and prepare analytical reports.
These applications reduce manual effort and support employees in performing tasks that require
synthesis of information or repetitive decision-making.

A third area involves improving business operations. Al is used in document understanding, fraud
detection, predictive maintenance, language translation, visual inspection, and the optimisation of routine
processes. These applications are often built by integrating pretrained models into business workflows,
enabling organisations to automate tasks that previously required significant human effort.

A final category involves the creation of entirely new products and services that rely on capabilities made
possible by modern Al techniques. These offerings often depend on generative or adaptive models that
enable new forms of interaction, content creation, or decision support that traditional software could not
previously deliver.

The Three Generations of Machine Learning

This slide explains the evolution of ML through three distinct generations.

Generation 1 is described as the era of traditional machine learning. Labeled datasets must be manually
created, features must be engineered, and models must be trained from scratch. Performance evaluation
is performed manually, and significant effort is required at each stage.

Generation 2 introduces deep learning, driven by the availability of large datasets and enhanced compute
resources. Models are re-trained using neural networks, and while accuracy improves dramatically, the
resource burden remains high. Neural architectures such as CNNs and RNNs define this era.

Generation 3 is marked by transfer learning and transformers. Large pre-trained models (GPT, BERT, etc.)
are made available to the public. These models are trained once at enormous cost and then reused by
millions of developers. In Generation 3, model training is no longer required for most practical
applications. Instead, APIs are used to perform inference on pre-trained or fine-tuned models, often
through a pay-per-use model.

Pre-trained Models

A pre-trained model is a machine learning model that has already been trained once on a very large
collection of data before it is used for any specific task.

In the context of language, a pre-trained language model is trained on large amounts of text. During this
training, the model is repeatedly exposed to sentences and is asked to perform tasks such as predicting
missing words or the next token. Over time, the model learns:

e how words usually appear together,
e how sentence structure works,
e how meaning depends on context.

By the end of this training, the model does not specialise in any one task such as sentiment analysis or
translation. Instead, it gains a general understanding of language. These pre-trained models are then

published and shared on platforms like the Hugging Face Hub, an open source platf
datasets, and code repositories.

Once a model is on the Hub, it:

belongs to the collection of community-available models,
can be downloaded as a model file,

can be loaded through libraries such as transformers,

or can be accessed via APIs provided by Hugging Face.

At this stage, the model is called a pre-trained model or base model. It is powerful, but still
general-purpose.

Examples include models based on transformer architectures such as BERT and GPT, and many others
hosted on Hugging Face.

Fine-tuned Models: Specialising the Base Model

A fine-tuned model is created when a pre-trained model is taken and then trained further on a smaller,
task-specific dataset.

The key idea is:

e The pre-trained model already knows “how language works" in general.
e Fine-tuning teaches it “how this specific task works” in particular.

Sentiment analysis with IMDB

Example: “bert-base-uncased-sentiment”, fine-tuned for sentiment analysis, trained on the IMDB movie
reviews dataset.

Stages of Fine Tuning the Base Model

1. A general BERT-based model is first pre-trained on a large corpus of English text. At this stage, it
learns grammar, vocabulary, and general patterns of language usage.
2. This pre-trained model is then fine-tuned on the IMDB movie reviews dataset, where each review is
labelled as positive or negative.
3. During fine-tuning, the model is shown many pairs of the form:
o review text
o label (positive or negative)
4. The model gradually learns what patterns in the text correspond to positive sentiment (for example,

n u

phrases like “amazing performance”, “highly recommended”) and what patterns correspond to

n u

negative sentiment (for example, “poorly written”, “waste of time”).

At the End of Fine Tuning spnno trained

By the end of fine-tuning: Fine-tuning on
IMDB movie reviews
e The modelis no longer just a general English model. dataset

e It becomes a sentiment analysis model that is particularly
good at judging whether a review is positive or negative.

Review text
Label

(positive or negative)

The model performs well on product reviews, social media

posts, and similar opinionated text. It uses its general language |
. . i itt
understanding plus the specific patterns learned from IMDB. [performance] l Py e oren]
This is a fine-tuned model. highlyn:commended J
I

[Fine-tuned model]

Sentiment analysis model

Fine-tuning Improves Performance

The performance of a fine-tuned model is generally better than a model trained from scratch on a small
dataset. The reasons are:

e A model trained from scratch on a small dataset (for example, only IMDB reviews) has to learn both
language structure and sentiment patterns from the same limited data. This is difficult and often

leads to weaker performance.
e A fine-tuned model starts in a much stronger position. It already knows language structure from its
large-scale pre-training. The IMDB dataset then only needs to teach it how sentiment is expressed.

This combination of:

e general language capability (from pre-training), and
e task-specific understanding (from fine-tuning)

allows fine-tuned models to perform better and to learn faster than models built fr
same small dataset.

Transfer Learning

Transfer learning refers to the reuse of knowledge gained from one learning process in another. In the
context of transformer models, the knowledge gained during pre-training—understanding grammair,
structure, vocabulary, and common language patterns—is transferred directly into the fine-tuning phase.
Fine-tuning simply adjusts the model so this general knowledge becomes useful for the specialised task.

In this context:

e The pre-training phase teaches the model general language knowledge.

e The fine-tuning phase transfers that general knowledge to a new task, such as sentiment analysis
or question answering.

The “transfer” is happening from:

e the general task of understanding text (pre-training),
e to the specific task (sentiment, QA, translation, etc.).

Applications of Transfer Learning

A single pre-trained model can be adapted for many diverse tasks:

a version fine-tuned for sentiment analysis,
another version fine-tuned for question answering,
another for summarisation,

and so on.

Each variant inherits the general language capability from the original pre-trained model and then learns
its specific role through targeted fine-tuning.

Example: Question Answering (distilled SQUAD model)

A model such as Distilbert-base-uncased-distilled-squad is fine-tuned for question
answering.

The process can be understood as:

e Abase DistilBERT model is pre-trained as a general language model.
e ltis then fine-tuned on a question—answer dataset (SQUAD-style), where each training example
contains:
o a passage of text,
o aquestion,
o and the correct answer span within the passage.
e When a new passage and question are provided, the model uses:
o its general understanding of language,
o plus its specialised training from SQuAD-style fine-tuning,

to select a likely answer span. Again, the knowledge learned in pre-training has
specific question-answering task.

Pre-Trained vs Fine-Tuned Models

The contrast between pre-trained and fine-tuned models is structured around three dimensions:

Training Data:

Pre-trained models are trained on very large and diverse corpora. Their learning captures general patterns.
Fine-tuned models are trained on narrower datasets related to specific tasks or domains. This
specialization enables improved performance in narrow use cases.

A pre-trained model serves as a general base model. A fine-tuned model is tailored for a particular
application such as sentiment analysis or domain-specific classification. The distinction is important
when selecting a model from platforms such as Hugging Face.

Efficiency:
Pre-training is computationally expensive. Fine-tuning is far more efficient because th
already present. Fine-tuning only adjusts model parameters relevant to the speciali

Pre-Trained vs Fine-Tuned

Fine-tuning generally improves performance because a pre-trained model already carries broad
language knowledge learned from large text collections. When this general understanding is adjusted
with domain-specific examples, the model develops a sharper sense of the patterns relevant to that
task. A model trained from scratch on a small dataset does not have this advantage, so it typically
performs worse.

Transfer learning enables this improvement. A pre-trained model that has learned grammar, vocabulary,
and common sentence structures can be adapted to a specialised task with relatively little data. A
practical example is sentiment analysis using an IMDB-based fine-tuned model. The general model
understands English, while the fine-tuned version learns how positive and negative opinions are typically
expressed in movie reviews. The same idea applies to question answering, where a model such as a
distilled SQUAD version uses its general language knowledge and refines it with question-answer pairs
drawn from that dataset.

Interpretability also becomes easier when fine-tuning is used. Because the model
specific domain, its mistakes tend to reflect patterns within that domain. This
straightforward to understand why a sentiment model misclassified a review
question-answering system selected an incorrect span from a passage.

Where These Models Live and How They Are Used

Some facts about the general purpose models:

e The Hugging Face Hub hosts models, datasets, and code.
e Models have model cards, describing:

o what they were trained on,

o what they should be used for,

o their limitations,

o and their evaluation scores.

A model such as “bert-base-uncased-sentiment”:

. lives on the Hugging Face Hub,
. can be searched and viewed through its model card,
. can be used through code such as:

from transformers import pipeline

classifier = pipeline('sentiment-analysis', model='bert-base-uncased-sentiment')
result = classifier("I love this movie!")

Here, the pipeline:

e downloads or loads the fine-tuned model,
e runs the input text through the model,
e and returns the sentiment label and a confidence score.

In this process:

e The pre-trained part of the model handles understanding the sentence
e The fine-tuned part of the model decides whether the sentiment is p

Interpretability in Fine-tuned Models

Interpretability becomes more manageable when a model is fine-tuned on a specific domain.
Consider the sentiment analysis case again:

e The model has been fine-tuned specifically on movie reviews from IMDB.

e When it misclassifies a review, the error can often be traced back to patterns in that domain:
o perhaps sarcasm in a movie review,
o or avery mixed opinion with both praise and criticism.

Because the model’s behaviour has been shaped directly by that dataset, its decisions can be analysed
more easily in that context. The model card, which lists evaluation metrics and limitations (for example,

’

poor performance on sarcasm or slang), further helps to interpret and trust or questio
outputs.

Summary

1. A pre-trained model is trained once, at large scale, to learn general language behaviour.

2. A fine-tuned model begins from this strong base and specialises in a specific task using a smaller
labelled dataset.

3. Transfer learning is what allows the general knowledge learned in pre-training to be reused
efficiently during fine-tuning.

4. Performance improves because fine-tuning builds on a strong foundation rather than starting from
scratch.

5. Interpretability becomes easier because the model’s behaviour is tied to the patterns present in the
task-specific dataset.

Questions

Choosing between training a model vs using a pre-trained API

Training a model is suitable when the task requires domain specific behaviour that cannot be met by
existing models or when proprietary training data must be used to create a customised system. This
approach requires labelled data, training infrastructure, and model optimisation effort.

A pre-trained API is suitable when the task matches a common pattern such as sentiment analysis,
classification, translation, summarisation, or object detection. The model is already trained on large
datasets and can be integrated immediately. This avoids the effort of dataset preparation, training cycles,
monitoring, and infrastructure management. Pre-trained APIs also ensure consistent performance and
faster development.

Questions

Q. Explaining business use cases for Al-driven systems

Al driven systems are used to enhance customer experience by providing automated agents,
personalised recommendations, identity verification, and content moderation. They assist employees by
generating content, producing reports, and supporting decision making. They improve business
operations through document understanding, fraud detection, predictive maintenance, language
translation, visual inspection, and process optimisation. Al systems also support the creation of new digital
products that rely on capabilities such as text generation, summarisation, and intelligent search.

Q. Describing efficiency advantages of transformer-based approaches

Transformer models process input by attending to all parts of a sequence simultaneously. This allows long
range relationships to be captured without sequential dependency. As a result, they achieve higher
accuracy in tasks such as translation, question answering, text generation, and summarisation. Because
the self attention mechanism scales effectively, transformers can be pre-trained on
reused across many tasks. This reduces the need for repeated training and provi
through fine-tuning.

Q. Reasoning about why APIs exist in modern ML pipelines

APIs provide access to pre-built intelligence without requiring model training. Modern ML pipelines rely on
APls because they encapsulate complex models behind stable interfaces. This allows applications to
perform tasks such as classification, translation, vision processing, or summarisation by sending requests
to an endpoint. It reduces development time, eliminates the need for specialised infrastructure, and
ensures consistent performance. APls also enable scalable usage because the service provider manages
hardware, updates, monitoring, and optimisation of the underlying model.

Q. Discussing transfer learning or model lifecycles

Transfer learning allows knowledge learned during large scale pre-training to be reused for new tasks. A
pre-trained model captures general language or visual patterns. Fine-tuning adjusts this model using a
smaller, task specific dataset, producing higher accuracy than training from scratch.

The model lifecycle typically includes pre-training, fine-tuning, deployment, inference, monitoring, and
periodic updates. Pre-training is resource intensive and performed once. Fine-tuning
specific tasks. Deployment exposes the model through APIs or pipelines. Monitori
and updates refine the model as data or requirements evolve.

Q.2. You are working as an Al Solutions Architect for a legal firm that wants to deploy an Al
chatbot to assist employees in answering questions from internal legal contracts, compliance
documents, and HR policies. Describe two approaches you could use to implement this solution
using APIs. For each approach, mention the APIs or services you would consider and explain any

assumptions involved. Code is not required. [6 marks]

Two Approaches for Implementing the Al Chatbot Using APls

A legal firm requires a chatbot capable of answering employee questions based on internal legal
contracts, compliance documents, and HR policies. This can be achieved using API-based Al services
without training models from scratch. Two suitable approaches are described below.

Approach 1: Using Cloud-based Cognitive Services APIs

Cognitive services provide ready made language capabilities through REST APIs. These services can
process text, extract intent, identify entities, summarise content, and answer queries. A legal chatbot can
be implemented by integrating the firm’s documents with language understanding, search, and question
answering APIs.

Language Services can analyse queries and identify intent and relevant terms. Document Intelligence or
text analysis APIs can extract key clauses, obligations, and policy statements from uploaded contracts or
policies. A question answering API can then match the employee’s question with relevant passages and
produce a concise answer. Speech Services may also be used if voice input is required.

Assumption:

The firm is willing to store its legal documents in the secured environment of the cloud provider’s cognitive
services, and these services support the languages, formats, and compliance requirements of the
organisation.

Approach 2: Using Hugging Face Transformer Models Through APIs

Hugging Face provides pre-trained and fine-tuned transformer models accessible through APl endpoints.
These models include tasks such as question answering, summarisation, text classification, and
translation. A legal chatbot can be created by selecting a transformer model fine-tuned for question
answering and using it through the Hugging Face Inference API.

The internal documents can be converted into passages. WWhen an employee asks a question, the chatbot
sends the question and the relevant text segment to the APIl. The model identifies the answer span just as
in standard question answering tasks. Summarisation models can also be used to simplify long policy text,
and text classification models can help route the question to the correct document category.

Assumption:

The firm stores its legal and compliance documents in a secure internal system and uses a retrieval layer
to send only the required text snippets to the Hugging Face API, ensuring no full documents leave the
firm’s environment.

Conclusion

Both approaches avoid training models from scratch and rely on pre-trained, production-ready APls. The
first approach uses cloud cognitive services with built-in document analysis and language models, while
the second uses transformer-based models hosted on Hugging Face. Both approaches provide scalable
and accurate solutions for answering queries from legal and policy documents.

Q.3. A user sends the following prompt to a chatbot — "It’s not a bad suggestion, though I’m not exactly thrilled about it."

a. Write the base Python code to analyze the sentiment of this message. Use any sentiment analysis API or model of your choice.

[2 marks] b. Based on the sentiment result, what would be an appropriate chatbot response? Justify your answer. [2 marks]

Python code for sentiment analysis

A simple sentiment analysis can be performed using a pre-trained transformer model available through
Hugging Face:

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

text = "It’'s not a bad suggestion, though I'm not exactly thrilled about it."
result = classifier(text)

print(result)

This code loads a standard sentiment analysis model and returns a label such a
a confidence score.

Appropriate chatbot response with justification

The message expresses mixed sentiment. The phrase “not a bad suggestion” indicates mild positivity,
while “not exactly thrilled” weakens the enthusiasm. This usually results in a sentiment classification that is
slightly positive or neutral.

An appropriate chatbot response would acknowledge the user’s hesitation and offer support, for example:

Response:
"l understand that the suggestion seems acceptable but not exciting. Let me know what specific concerns
you have, and | can help refine it."

Justification:
The response reflects the mild, reserved sentiment detected by the model. It recognises the user’s partial
agreement and addresses the lack of enthusiasm by inviting clarification.

Cognitive Services

Cognitive services refer to cloud-hosted artificial intelligence capabilities that allow applications to
perform tasks that resemble human cognitive functions. These tasks include:

understanding language,
recognising objects in images,
extracting meaning from speech,
and making recommendations.

The central idea behind cognitive services is that powerful Al models can be used without requiring any
expertise in training or maintaining machine learning systems. Instead, the intelligence is accessed
through simple API calls.

These services are provided by major cloud platforms. They offer pre-built models that have already been
trained using large datasets. Because the heavy training work has been completed i
can incorporate sophisticated Al behaviour into their applications immediately. T
involves sending data to a cloud endpoint and receiving the processed output j

Nature of Cognitive Services

Cognitive services are designed to replicate abilities such as understanding, perception, and
decision-making. They operate through cloud infrastructure, which allows them:

e to handle large volumes of requests,
e scale automatically,
e and deliver consistent performance.

This makes them suitable for production applications where reliability and availability are important.

One significant advantage of cognitive services is the reduction in development effort. Since the models
are already trained, the user does not need to assemble datasets or configure training pipelines. The
services expose their functionality through standard interfaces such as HTTP REST APlIs or through SDKs
for common programming languages. This enables integration into web applications, mobile applications,
and enterprise systems.

Azure Cognitive Services

Azure provides a suite of Al services that can be accessed directly through the cloud. These services
include pretrained models for language understanding, speech processing, vision tasks, and
decision-making. The entire collection is built and maintained by the Azure Al and Research team. Each
service can be accessed through REST endpoints, allowing developers to send input such as text, audio,
or images and receive structured Al-generated output.

Common examples include text analysis, speech to text, text to speech, translation, object detection, and
content moderation. By using these services, developers extend their applications with complex Al
behaviour without performing any training or constructing machine learning infrastructure.

Amazon Al Services

AWS offers a broad collection of fully managed artificial intelligence services that can be invoked directly
from the cloud. These services cover language, speech, vision, analytics, and personalisation tasks, all
backed by pretrained models maintained by Amazon's Al and Machine Learning teams. Each service
exposes a simple API or REST endpoint, allowing developers to submit text, images, audio, or video and
receive structured, machine-generated results.

Typical examples include:

natural language processing through Amazon Comprehend,

speech recognition and synthesis through Amazon Transcribe and Amazon Polly,
image and video analysis through Amazon Rekognition,

translation via Amazon Translate,

and content moderation using built-in Rekognition and Comprehend features.

By adopting these services, developers add advanced Al capabilities to their appli
training, or hosting any machine learning models or infrastructure themselves.

Google Cloud Vertex Al (Gemini Models)

Google Cloud provides a suite of advanced Al services powered by its Gemini family of foundation
models. These services can be accessed directly through Vertex Al, allowing developers to use
pre-trained large language models, multimodal models, and specialised vision, speech, and translation
systems. The entire platform is built and maintained by Google DeepMind and Google Cloud’s Al
engineering teams. Each model can be invoked through REST or gRPC endpoints, where developers send
inputs such as text, images, audio, or video and receive structured model-generated output.

Common use cases include text analysis, summarisation, translation, code generation, speech
processing, image understanding, and multimodal reasoning. By relying on these models through Vertex
Al's managed interface, developers can enhance their applications with sophisticated Al capabilities
without training their own models or setting up any machine learning infrastructure.

Categories of Cognitive Services

Cloud-based cognitive services are often grouped by the type of cognitive ability they provide.

Language services process and analyse text. They identify entities, classify text, detect sentiment,
summarise content, and extract intent from written material.

Speech services convert speech to text, convert text to speech, translate speech, and recognise speakers.

Vision services analyse images and video. They recognise objects, identify faces, classify scenes, read
text present in images, and process visual data for downstream tasks.

Decision services assist with making informed choices by applying trained models for anomaly detection,
recommendation, and classification in structured data.

OpenAl-based services provide access to powerful transformer models that can generate text, analyse
content, summarise information, or answer questions. These models are offered through REST APIs and
require no local training.

These categories offer a wide range of ready-made functions that cover comm
Al applications.

Benefits of Using Cognitive Services

Cognitive services offer several important advantages.

Complex Al behaviour can be added with minimal coding effort because the services use predefined and
pre-trained algorithms.

Integration is straightforward since the services are delivered through REST interfaces, which can be
called from almost any application environment.

The services are designed to be usable by individuals with varying levels of Al knowledge, meaning both
experienced developers and new practitioners can incorporate intelligence into applications without
facing complex training processes.

and maintenance

These services are hosted in the cloud, which means the underlying hardware, scaling,
are handled automatically. This is particularly helpful when applications must serve
concurrently, process large volumes of text or images, or operate continuously.

Cognitive Services in the Broader Al Workflow

The availability of cloud-hosted cognitive services has changed the way Al applications are built. Instead
of constructing models from scratch, developers rely on pretrained models and APIs that encapsulate
powerful deep learning algorithms. This approach aligns with the larger shift toward transformer-based
systems and foundation models, where extensive pre-training is performed once and the resulting
capability is shared through public interfaces.

By using language, speech, vision, and decision services, a wide variety of applications can be created.
These may include virtual assistants, content analysis systems, image classification tools, customer
support agents, translation services, or automated document processing pipelines.

Hugging Face

Hugging Face is an open source platform that serves as a central hub for transformer models, datasets,
and code repositories. It plays a major role in modern natural language processing because it brings
together pre-trained models and fine-tuned models created by the community. These models can be
downloaded, reused, and integrated into applications with minimal effort. The platform supports text,
image, and audio tasks, making it useful for a wide variety of Al applications.

The Hub operates similarly to a version-controlled repository. Every model is stored with its files and
documentation, and developers can track changes or contribute improvements. Alongside models, the
platform hosts datasets and code, which creates an ecosystem where tasks, models, and data can be
connected easily.

Tasks in Hugging Face

A task represents a specific problem an Al model is designed to solve. Hugging Face organises models by
tasks so that developers can quickly locate models that suit their needs. Tasks describe the purpose of
the model and the structure of the input and output.

For example,

e Text classification involves assigning labels to text segments. Sentiment analysis is one instance,
where text is labelled as positive or negative.

e Named Entity Recognition identifies entities such as names, locations, and organisations within

text.

Text generation creates new text based on a prompt.

Machine translation converts text from one language to another.

Question answering identifies an answer within a passage of text.

Summarisation produces a shorter version of a longer input while keeping the

These tasks illustrate how Hugging Face categorises practical applications.

There are also tasks outside language processing.

e Image classification assigns categories to images.
e Object detection identifies objects within an image.
e Speech recognition converts spoken audio into text.

All of these tasks are represented on the Hub and supported by pre-trained and fine-tuned models.

Models in Hugging Face

A model on Hugging Face is the machine learning component used to perform a task. Models may be
general-purpose or specifically adapted to particular problems.

A pre-trained model is trained once on a large amount of data to learn broad language patterns or visual
features. Such a model is suitable as a starting point for many tasks because it already understands
how language or images behave in general.

A fine-tuned model is created when a pre-trained model is adapted further usin? a smaller, task-specific
dalljcasethc|h|s produces better performance on that particular task than a model trained from scratch on
a limited dataset.

Transformer-based models are widely used on Hugging Face. Examples include:

e BERT, which is effective for tasks involving understanding text, and GPT, which performs text
eneration.

e TS5 is atext-to-text model that can be adapted for translation, summarisation, and classification.

DistilBERT is a smaller and faster version of BERT.

Other variants such as RoBERTa, XLNet, and ALBERT refine transformer architecture in different

ways.

The Hub stores many pre-trained and fine-tuned versions of these models.

Datasets in Hugging Face

Datasets provide the material used to train, fine-tune, or evaluate models. Hugging Face includes a wide
range of datasets that support language, vision, and audio tasks. These datasets can be loaded directly
through the Hugging Face library.

Examples include:

SQuAD for question answering,

GLUE for evaluating language understanding,

IMDB for sentiment analysis,

COCO for image classification and object detection,
and LibriSpeech for speech recognition.

Many of these datasets are used to showcase the capabilities of pre-trained and fine-tuned models.
Custom datasets can also be uploaded to the Hub, which allows specialised tasks to
shared datasets.

The availability of datasets in one place simplifies experimentation, model bui

How Tasks, Models, and Datasets Interact

There are mainly three components which are as follows:

e Tasks define the type of problem to be solved.

e Models perform these tasks.
e Datasets provide the training or evaluation examples needed to teach the model.

These three components form a cycle. A developer selects a task they want to solve, chooses an
appropriate model from the Hub, and uses a dataset to train, fine-tune, or test the model. This structure
makes it easy to build practical Al workflows using reusable components.

Example Workflow

e An workflow begins with selecting a task such as sentiment analysis.

A suitable model is then chosen from the Hugging Face Hub, for example a BERT-based model that
has already been fine-tuned for this purpose.

e A dataset such as IMDB may be used to fine-tune or evaluate the model.
e Finally, the model is used to perform inference on new text, which produces a predicted sentiment.

This sequence provides a clear path from identifying the problem to applying the model.

Model Cards

Each model on Hugging Face includes a model card. A model card is a detailed file that documents the
model. It explains what the model is designed to do, how it was trained, the data used during fine-tuning,
performance metrics, and known limitations.

For instance, a sentiment model fine-tuned on the IMDB dataset may have a model card that describes its
purpose, its accuracy, its F1 score, and its limitations. These limitations may include challenges with
languages not included in training or difficulties with informal or sarcastic text.

Model cards help users understand where a model performs well and where it might struggle, which
promotes responsible and informed usage.

Basics of Natural Language Processing

Natural Language Processing is the field that enables machines to interpret, analyse, and generate human
language. It draws from computer science, linguistics, and artificial intelligence. Human communication
takes place through words, sentences, and meanings. For a machine to work with this form of
communication, it must process language in a form it can understand.

People interact with computers through both text and speech. A user may type a query such as a location,
a fact, or a keyword into a search box. A user may also speak to a voice assistant and ask for music or
information. In both cases, the system must interpret the input correctly. The machine must identify what
the user said or wrote, recognise the structure of the message, and determine the intention behind it.

Understanding Language

When text is analysed, the system must identify several layers of meaning.
[J
[J
[J
[J
[J

To interpret these signals, NLP systems rely on a sequence of computational steps. These steps are often
grouped under Natural Language Understanding, where the goal is to extract meaning from the text.

Syntax refers to the structure of the sentence.

Semantics refers to the meaning of the words in that structure.

Context influences how meaning is interpreted.

Sentiment expresses whether the text conveys a positive or negative feeling.
Intent describes what the user wants to achieve.

Syntactic Processing

Syntactic processing focuses on the structural elements of language. It includes operations such as:

. tokenising text into words

. reducing words to their root forms through stemming or lemmatisation
. identifying the role of each word through part of speech tagging

. segmenting text into manageable units

These steps allow the system to recognise how the words in a sentence are organised.

Semantic Processing

Semantic processing deals with meaning.

It focuses on identifying entities such as names, locations, and organisations through Named Entity
Recognition.

It also involves resolving meaning when words have multiple interpretations, a task known as word sense
disambiguation. Both actions assist the system in extracting information from text and determining what
the text is about.

Natural Language Understanding

The combination of syntactic and semantic processing produces Natural Language Understanding. This
stage allows the system to analyse intent, identify subjects and objects in the sentence, recognise
categories, detect mood or sentiment, and extract relevant information. As a result, the system becomes

capable of responding appropriately to what the user expresses.

Natural Language Generation

After understanding the input, an application may need to generate a human readable response. This is
achieved through Natural Language Generation. Several model families have been used for this purpose.

Markov chains create text based on word probabilities.

Recurrent neural networks use sequential processing of input data.
LSTM networks handle longer patterns in sentences.

Transformer models generate fluent and contextually consistent text.

Natural Language Generation is responsible for creating meaningful sentences that a user can
understand.

Example Pipeline for NLP

In many applications, the steps appear in a pipeline.

Text is received.

It is then tokenised and processed syntactically.

Semantic information is extracted.

Named entities and relations are identified.

Intent is detected. Sentiment may be determined.

Finally, the system either performs an action or produces a suitable text response.

This flow demonstrates how NLP transforms raw human language into structured, meaningful
information.

The following diagram illustrates this flow in a visual manner.

Tools for NLP and NLU

Several libraries are available for performing NLP tasks. These include libraries such as the:

Stanford CoreNLP parser in Python,

NLTK for foundational tasks,

SpaCy for industrial NLP workflows,

and Apache OpenNLP for Java based text processing.

These tools handle tokenisation, tagging, parsing, and the many steps that contribute to Natural Language
Understanding.

NLP Components and Pipelines

Natural Language Processing systems are often organised into two broad functional areas.

The first area involves understanding human language, and the second involves generating language that
is meaningful and readable.

These two areas are known as Natural Language Understanding and Natural Language Generation.
Together, they form the core of how machines process and respond to human communication.

Natural Language Understanding

Natural Language Understanding focuses on converting unstructured human language into structured
representations that a machine can interpret.

When text or speech is received, the system must determine what the input contains, what the user
intends to express, and what information is being conveyed.

The understanding process usually begins with identifying the basic units of the text.

Words are separated from each other.

Sentences may be segmented.

Each word is then examined so that its form and function can be identified.

Part of speech tagging assigns grammatical roles such as noun, verb, or adjectiv,

This provides an initial structure for the rest of the analysis.

Once the structure is identified, the system moves toward
meaning.

Words are reduced to their base forms when
required(Normalisation).

Named Entity Recognition identifies names, places,
organisations, or other entities in the text (NER).
Relationships between words may be examined to
determine who is performing an action or who is
receiving it.

Ambiguity is reduced by determining which meaning
of a word applies in the given context.

At this stage, the system is able to identify intent,
detect topics, classify the text, or determine
sentiment.

Natural Language Understanding transforms raw text into
structured knowledge. This enables downstream tasks such
as answering a question, retrieving information, classifying
a document, or controlling an application through natural
lanauaage commands.

INPUT TEXT
(raw sentence or query)

STRUCTURE IDENTIFICATION
1 (syntax, segmentation, POS)

NORMALISATION
Stemming, Lemmatization (base word
forms)

A 4

RELATIONSHIP & CONTEXT
RESOLUTION
Who acts? Who receives? Which meaning
applies?
Word-sense disambiguation reduces
ambiguity.

l

INTENT & TOPIC EXTRACTION
Identifies purpose, subject, sentiment, or
category.

|

NATURAL LANGUAGE UNDERSTANDING
(NLU)
Structured meaning is now available.

h 4

DOWNSTREAM TASK ENABLED
Question Answering
Document Classification
Information Retrieval
Command Execution (e.g., voice assistants)

Natural Language Generation

Natural Language Generation performs the opposite function. After a system has analysed information
or made a decision, it may need to express the result in human language. Natural Language Generation
creates clear and coherent sentences to convey that information.

Several model families have been used to perform text generation.

Earlyhmodels such as Markov chains generate text based on the probability of one word following
another.

Recurrent neural networks generate sequences by processing one element at a time.

LSTM networks improve this process by retaining longer term patterns.

Transformer models generate text by attending to relationships across the entire sequence,
producing fluent and contextually consistent output.

Natural Language Generation may produce short, direct messages or longer explanations. It may

summarise a large document into a compact form. It may paraphrase a sentence. It may generate text
in response to a question. The output is presented in a form that users can read an
naturally.

The Flow from NLU to NLG

Many NLP applications combine both understanding and
generation. The system begins by receiving input, which may be
text or speech. Natural Language Understanding extracts
structure, meaning, intent, and any relevant entities. Once the
meaning is recognised, the application performs the required
action. The final step produces a response through Natural
Language Generation.

Consider a scenario where a user asks a virtual assistant a
question. The question is first processed through Natural
Language Understanding to identify what is being asked. The
system retrieves the information or performs the action. It then
constructs a readable reply through Natural Language
Generation. This chain of steps forms a typical NLP pipeline.

(text or spoken sentence)

{ USER INPUT]

A

y

NATURAL LANGUAGE
UNDERSTANDING (NLU)

e Structure, Meaning
* Intent, Entities

y

A

APPLICATI

ON LOGIC

Information retrieval or

action executio

n is performed

A

y

NATURAL LANGUAGE
GENERATION (NLG)

A readable an
response is

d coherent
produced

A

y

SYSTEM RESPONSE
(text reply or spoken output)

Putting it all Together

NLU and NLG operate together to support a wide
variety of applications.

e Chatbots interpret user queries and produce
conversational responses.

e Question answering systems extract relevant
answers from text and present them in
readable form. Translation systems
understand the structure and meaning of text
in one language and generate a
corresponding version in another language.

e Sentiment systems understand the attitude
expressed in text and generate output that
reflects the detected emotion.

Transformer Applications in NLP

Transformer based models have become central to modern Natural Language Processing because they
handle context more effectively than earlier approaches. They process all parts of a sentence
simultaneously, which allows them to capture long range relationships between words and interpret subtle
variations in meaning. As a result, transformer models are used in many core NLP tasks.

These tasks cover a wide range of real world applications, such as answering questions, detecting spam,
identifying sentiment, translating languages, generating text, summarising documents, and paraphrasing
content. Each task relies on the model’s ability to understand and manipulate natural language in a
structured way.

Applications of Transformers (NLP)

Question Answering

Question answering systems identify answers to questions within a given passage or context. A user
provides a question and the supporting text. The transformer model analyses both, determines how the
question relates to the passage, and selects the portion that answers it. This capability is used in virtual
assistants and knowledge retrieval systems.

Spam Detection

Spam detection identifies unwanted or harmful messages in communication systems such as email or
messaging platforms. Transformer models examine the content of a message, recognise suspicious
patterns, and classify the message accordingly. The model’s understanding of text structure, intent, and
phrasing allows it to distinguish between legitimate and unwanted messages.

Sentiment Analysis

Sentiment analysis, also known as opinion mining, evaluates whether a piece of te
negative, or neutral feeling. Transformer models identify the tone and emotional
These cues may include descriptive phrases, expressions of approval, complai
opinion. Sentiment analysis is used in product reviews, customer feedback

Machine Translation

Machine translation converts text or speech from one natural language to another. Transformer
models are particularly effective in this task because they process sequences while attending to the
meaning of each word in context. As a result, the translated text is more fluent and captures the
original meaning accurately. This has become a standard approach in multilingual applications.

Text Generation

Text generation produces new text based on user input. A prompt is given, and the transformer
model continues the text or creates new sentences that follow logically from the prompt. The
generated output aligns with the structure and style of the input. This ability is used in creative
writing support, chat systems, and content creation tools.

Text Summarisation, Paraphrasing, and Error Correction

Transformers are also used in summarisation. A long passage can be condensed into a
shorter version while preserving its key meaning. This is helpful when h
documents or articles. Paraphrasing transforms a sentence into an
conveys the same meaning. Grammatical error correction identifie
produces a corrected version. These applications appear in writi

Computer Vision APlIs

Computer Vision APIs provide ready made capabilities for analysing images and videos. These APlIs allow
applications to:

detect objects,

recognise faces,

classify images,

or extract features without the need to train models.

The intelligence is accessed through high level interfaces, which return structured output such as
predicted labels, bounding boxes, or descriptive information about the visual content.

Cloud platforms expose computer vision features as services that can be called using REST interfaces or
SDKs. These capabilities include object detection, face recognition, image classification, feature

extraction, image restoration, object tracking, and scene reconstruction. Such tasks f
of many modern applications that rely on visual analysis.

Key Computer Vision Tasks

Object detection identifies and localises objects within an image or video. Face recognition identifies
individual faces and is used in authentication or security systems. Feature extraction identifies patterns
that distinguish one object from another. Image classification recognises the primary category of an
image. Image restoration improves clarity or reconstructs missing portions of an image. Object tracking
follows movement across video frames. Scene reconstruction produces a three dimensional structure
using multiple images.

Each of these abilities is made available through Computer Vision APIs that accept an image and return
analysis results.

Example of a Real Computer Vision API

A practical APl example appears in the image classification demonstration using a Hugging Face transformer model.
The API can load a model for classification and process an image directly through a URL. The following code
illustrates a working Computer Vision API call:

from transformers import pipeline

Load the image classification pipeline

image_classifier = pipeline("image-classification",model="facebook/deit-base-distilled-patch16-224")
Use a new image URL

url = "https://upload.wikimedia.org/wikipedia/commons/9/9a/Pug_600.jpg"

Perform image classification using the URL directly

result = image_classifier(url)

Print the result

print(result)

The model processes the image hosted at the given URL and returns predictions indic

