
Distributed Mutual Exclusion

Distributed Computing 
CS-7 Second Semester 

Lesson 7



Introduction to Distributed Mutual Exclusion

In a distributed system, several processes running on different machines may need access to a single 
shared resource. Since the resource cannot be safely used by more than one process at the same time, 
access must be coordinated so that only one enters its critical section at any given moment. This 
coordination is achieved through distributed mutual exclusion algorithms.

Such coordination becomes necessary because race conditions may arise if two processes update or 
read shared data simultaneously. Mutual exclusion ensures that shared objects such as files, buffers, or 
shared memory regions are accessed in a controlled sequence. Distributed systems rely on message 
passing to enforce this exclusivity, since no central memory or clock exists.

Deadlocks may occur when processes wait indefinitely for one another’s resources. Because distributed 
deadlocks are harder to detect due to lack of global visibility, systematic detection and resolution 
mechanisms are required.



Mutual Exclusion: Fundamental Idea

Mutual exclusion represents the guarantee that 
no two concurrent processes execute their 
critical sections simultaneously. This property 
ensures correctness in operations involving 
shared data. It also prevents overlapping 
modifications or inconsistent reads.

A critical section refers to the part of a program 
where shared resources are accessed. Since 
multiple processes may reach these code 
segments independently, coordination is 
required so that only one process is active within 
these segments at a time.



Critical Section (CS): Definition and Behaviour

A critical section forms the part of a multiprocess program that must 
not run concurrently across different processes or threads. It 
normally includes operations that interact with shared structures or 
devices. Exclusive access must be ensured to avoid interference 
between concurrent reads and writes.

A critical section may span multiple discontiguous parts of a program. 
For instance, reading a file in one part of a program and modifying it 
in another still requires mutual exclusion because the two actions 
interact with the same resource.

A thread or process attempting to enter its critical section is required 
to wait if another process is already inside. The critical section is 
expected to complete in finite time so that waiting processes are 
eventually served. The management of entry and exit into this 
section forms the core of synchronisation.



Preliminaries for Distributed Mutual Exclusion
Before studying specific algorithms, several foundational aspects must be considered:

System Model

A distributed system consists of multiple processes that do not share memory and instead communicate 
using message passing. There is no global clock, so ordering of events must be inferred using logical 
mechanisms.

Requirements of Mutual Exclusion Algorithms

Any distributed mutual exclusion (DME) algorithm must satisfy several essential properties:

1. Safety: At most one process is inside the critical section at any time.
2. Liveness: Every requesting process is eventually allowed to enter.
3. Fairness: Requests should be granted without indefinite postponement or starvation.



These requirements ensure correctness, progress, and predictable behaviour.

Performance Metrics

Performance of DME algorithms is commonly evaluated through metrics such as:

● The number of messages exchanged per critical-section entry.
● The waiting time before a process enters the critical section.

These metrics help compare assertion-based, token-based, and quorum-based approaches.



Approaches to Mutual Exclusion in Distributed Systems
There are three broad design strategies for mutual exclusion each with different trade-offs:

Token-based Approach

A unique token circulates among processes. Only the process holding the token may enter the critical 
section. Mutual exclusion is ensured implicitly because the token is singular. Token loss and token 
regeneration strategies are concerns in this category.

Non-token-based Approach

Processes exchange request and reply messages to determine order of entry. These approaches usually 
rely on logical clocks and message timestamps. Algorithms such as Lamport’s and Ricart-Agrawala fall 
under this category.

Quorum-based Approach

Processes contact only a subset of nodes (a quorum) to obtain permission. Intersection of quorums 
ensures that mutual exclusion is preserved while reducing message overhead. Maekawa’s algorithm 
uses this structure.



System Model

Structure of the Distributed System
A distributed mutual exclusion environment is formed by several sites, represented as S1, S2 up to SN. 
Each site hosts a process, written as pi, and these processes communicate through an asynchronous 
communication network. Since no shared memory exists between sites, all coordination for entering the 
critical section is carried out purely through message exchanges.

When a process intends to enter its critical section, it sends REQUEST messages either to every other 
site or only to those sites relevant to a particular algorithm. Entry to the critical section is permitted only 
after appropriate replies are received. While the process waits, it is not allowed to issue another request 
for the same critical section, since only one outstanding request is permitted at a time.



Possible States of a Site

A site may be in one of three basic states at any moment:

● Requesting the Critical Section
In this state, a process has already issued a request and is waiting 
for replies. It is blocked and cannot initiate another request for the 
critical section. This ensures a single, well-defined request per 
process.

● Executing the Critical Section
When the site is inside its critical section, it has exclusive access 
to the shared resource. No other process may execute its own 
critical section simultaneously.

● Idle
In the idle state, the site is neither requesting the critical section 
not executing it. The process is simply performing regular 
operations outside the critical region.



Additional State in Token-Based Algorithms

In token-based mutual exclusion algorithms, an extra condition arises. A site may hold the token even 
when it is not inside the critical section. When the token is present at a site and the site is not executing 
the critical section, the site is considered to be in the idle token state.

This state highlights that holding the token does not automatically imply entry to the critical section; the 
site may hold the token while continuing with other work outside the critical region.

At any moment, a site may have several pending requests from other sites. These requests are queued 
and processed one by one so that fairness and order are preserved.



Requirements of Mutual Exclusion Algorithms

Safety Property

The safety requirement ensures that at any instant, only one process is allowed to execute its critical 
section. The purpose of this condition is to prevent conflicting operations on shared resources. Since 
multiple distributed processes may request the same critical section, the algorithm must guarantee that 
simultaneous entry never occurs. This requirement forms the foundation of correctness in distributed 
mutual exclusion.

A simple conceptual example is two distributed processes attempting to update the same record. If both 
were allowed in the critical section at once, inconsistent or corrupted data could result. The safety property 
prevents such situations.



Liveness Property

Liveness addresses the guarantee that the system continues to 
make progress. It ensures that no deadlocks or starvation occur 
while processes compete for the critical section.

Deadlock is avoided by ensuring that sites do not wait endlessly for 
messages that never arrive. Starvation is prevented by ensuring that 
no site is forced to wait indefinitely while others repeatedly gain 
access to the critical section.

The idea captured in this property is that every legitimate request 
will eventually be served. A site wishing to execute its critical section 
is assured that the opportunity will arise within a finite time, provided 
it has made the necessary request.



Fairness Property

Fairness ensures that each process gets a fair chance to execute its critical section. In distributed 
mutual exclusion algorithms, this property is usually implemented by respecting the order in which 
requests arrive.

The sequence is typically determined by a logical time-stamping mechanism so that earlier requests are 
not overtaken by later ones. This prevents scenarios where one site repeatedly gains access while 
others are continuously postponed. The principle preserved here is that request order should reflect 
system arrival order as accurately as possible.



Performance Metrics for Distributed Mutual Exclusion

Message Complexity
Message complexity refers to the number of messages exchanged by a site for one execution of its critical 
section. Since distributed algorithms rely on message passing for coordination, this metric helps indicate 
how costly it is to obtain mutual exclusion. Algorithms differ significantly in how many request, reply, or 
token-related messages they require. A lower message count generally implies better scalability.

Synchronization Delay
Once a process leaves the critical section, another process may be waiting to enter. Synchronization 
delay measures the time needed between one site exiting the critical section and the next site 
entering it.

This delay typically involves one or more message exchanges necessary to transfer permission or token 
ownership, depending on the algorithm. Minimising synchronization delay is important because it 
influences how quickly the system can rotate access among processes.



Performance Metrics for Distributed Mutual Exclusion

Synchronization Delay

Once a process leaves the critical section, another 
process may be waiting to enter. Synchronization 
delay measures the time needed between one 
site exiting the critical section and the next site 
entering it.

This delay typically involves one or more message 
exchanges necessary to transfer permission or 
token ownership, depending on the algorithm. 
Minimising synchronization delay is important 
because it influences how quickly the system can 
rotate access among processes.



Response Time
Response time refers to the period a request 
waits for its critical section execution to 
complete after its request messages have been 
sent out.

Important to note is that this waiting interval 
begins only after the messages have been 
issued, meaning the internal queuing delay that 
occurs before message transmission is not 
included. This metric provides a measure of how 
soon a process can expect to finish its critical 
section once its demand has been announced to 
other sites.

The diagram then shows the waiting period that follows. During this time, the site cannot enter the critical 
section until the required permissions or replies are received. This waiting interval, starting immediately 
after the request messages are sent out and ending when the site actually enters the critical section, 
represents the response time. Response time measures how long the site must wait after announcing its 
request but does not include any time spent waiting before the request messages were transmitted.

The first event shown is the arrival of the critical 
section request at the site. At this moment, the 
process has decided that it needs to enter the 
critical section. Shortly after this arrival, the site 
sends out its request messages to other sites, as 
required by the mutual exclusion algorithm in 
use.



System Throughput

System throughput captures how frequently the system can execute critical-section requests. It depends 
on both synchronization delay and the average time spent inside the critical section.

If SD denotes the synchronization delay and E represents the average critical section execution time, 
the throughput is expressed as:

System Throughput = 1 / (SD + E)

This equation reflects that higher delay or longer execution times reduce throughput, while reductions in 
either contribute directly to improved performance.

A small diagram showing CS time plus synchronization delay contributing to the cycle time may help 
visual understanding.



Distributed Mutual Exclusion: Approaches and Algorithms

Complexity of Distributed Mutual Exclusion

Distributed mutual exclusion is challenging because: 

● all coordination takes place across a network where message delays are unpredictable 
● and processes do not have complete knowledge of the system’s state. 

Each process must make decisions with only the information available through exchanged messages. 
Because of this uncertainty, algorithms must be carefully designed so that correctness is maintained even 
when messages arrive late, arrive out of order, or are temporarily lost and later recovered.

Three broad methods are used to achieve mutual exclusion across distributed sites: token-based, 
non-token-based, and quorum-based approaches.



Token-Based Approach

In the token-based method, a unique token is shared among all the sites. This token is sometimes 
referred to as the privilege message. A site is permitted to enter its critical section only when it holds this 
token, and the site continues to hold the token until it finishes its critical section. Mutual exclusion is 
maintained because the token exists in exactly one copy in the system.

Different algorithms within this category vary primarily in how the system searches for the token or how 
the token is passed along. The main idea remains that possession of the token grants exclusive access.

Non-Token-Based Approach

This approach does not rely on a unique token. Instead, sites determine the next critical section entrant 
by exchanging one or more rounds of messages. A site enters its critical section only when a specific 
assertion, defined using its local variables, becomes true. The assertion is constructed so that it is true 
for only one site at any given moment, which enforces mutual exclusion.

This style of algorithm depends heavily on message ordering and evaluation of local conditions, and it 
avoids token-loss problems because no physical token is used.



Quorum-Based Approach
In quorum-based mutual exclusion, a site requests permission from a selected subset of sites called its 
quorum. The quorums are arranged so that any two quorums intersect at at least one common site. This 
common site ensures that when two processes try to enter the critical section at the same time, at least 
one site receives both requests and can enforce that only one request proceeds.

Because each site communicates only with the sites in its quorum, this approach can reduce message 
overhead while still maintaining correctness.

Imagine a distributed system where many sites (computers) may want to enter a critical section (CS).

We need a rule: only one is allowed in at a time.

The Core Idea

Instead of asking every site for permission (as in Ricart-Agrawala) or relying on a single coordinator, 
quorum-based mutual exclusion says:

“Each site talks only to a small fixed group of sites (its quorum). But the quorums are arranged 
so cleverly that any two quorums always overlap in at least one site.”

That overlapping member is the key to intuition.



Think of each quorum as a small committee.

When two different sites want to enter the CS at the 
same time:

● Site A asks its committee (quorum A).
● Site B asks its committee (quorum B).

The intersection site, the one that belongs to both 
committees, will receive both requests.

Because the intersection site can only approve one 
request at a time, it automatically prevents both 
processes from entering the CS simultaneously.

That one overlapping member acts like a “referee” 
shared by both groups.



Why does this reduce messages?

Each site contacts only the few members in its quorum.
It does not need to broadcast to every site in the system.

If your quorum size is √N in a system with N sites, the cost becomes:

● O(√N) messages instead of O(N) in fully distributed algorithms.

So quorums are a mathematical trick that balance:

● Less communication
● With Guaranteed correctness.



Q.2 Explain the concept of Quorum used in Maekawa’s algorithm. Why does 
Maekawa’s algorithm use a RELEASE message?

Quorum Concept in Maekawa’s Algorithm (Mutual Exclusion)

Maekawa’s algorithm reduces message overhead by replacing “ask every site” with “ask only a fixed 
subset of sites,” called a quorum.
A quorum is a small group of sites selected for each process, but these quorums are constructed in a 
special way:

Any two quorums always intersect in at least one common site.

This property is crucial. Suppose Process A contacts Quorum A and Process B contacts Quorum B at the 
same time. Because the two quorums intersect, there is at least one site that belongs to both. That site 
receives both requests. Since each site can grant only one request at a time, the intersection site 
ensures that only one process obtains a full set of permissions. This overlapping site acts as a referee, 
preventing both processes from entering the critical section concurrently.

Thus, quorum intersection is the mechanism that enforces global mutual exclusion even though each 
process contacts only a small subset of sites.



Why Maekawa Uses a RELEASE Message

A RELEASE message is mandatory in Maekawa’s algorithm for two tightly connected reasons:

(a) To free the “grant” held at each quorum site

When a process is granted permission by its quorum, each site in that quorum temporarily becomes 
“locked” for that process (it cannot grant permission to anyone else).
 After the process finishes its critical section, each quorum site must be explicitly informed that it can 
release this lock.
 The RELEASE message does exactly this. It resets the site’s state, allowing it to consider other pending 
requests.

Without RELEASE, those sites would continue thinking the process still holds the lock, causing 
permanent blocking.



(b) To maintain correctness across intersecting quorums

Because quorums overlap, a single site may be part of several processes’ quorums.
If this common site does not receive a RELEASE message, it will not forward permission to any other 
process in any of those quorums.
This breaks the very reason quorums work: the intersection site must be free to arbitrate new conflicts.

Thus, RELEASE ensures:

● no deadlock (sites are not left holding outdated grants)
● no starvation (waiting requests eventually get processed)
● no violation of mutual exclusion (the intersection site clears its state correctly before evaluating the 

next request)

In short, the RELEASE message is essential to restore the quorum sites’ availability, maintain correct 
arbitration at the intersection sites, and guarantee progress in the system.



Lamport's Distributed Mutual Exclusion Algorithm
Lamport’s distributed mutual exclusion algorithm is an application of his logical clock synchronization 
scheme. The core principle is that events, specifically requests for the critical section, are ordered 
using logical clocks rather than physical time.

The algorithm's fairness and correct execution stem from two key rules:

1. Timestamp Assignment: When a site receives a request, it updates its own logical clock and 
assigns a timestamp to the request; this reflects its logical ordering within the distributed system.

2. Request Ordering: Requests are always handled in the increasing order of their timestamps. 
This rule, which dictates that the request appearing earliest in logical time is chosen first, prevents 
later requests from overtaking earlier ones.

To enforce this ordering, each site maintains a request queue that stores pending mutual exclusion 
requests. These entries are sorted by their timestamps, ensuring that the request with the smallest 
timestamp is always at the front and becomes the only one eligible for execution.



Ricart-Agrawala Algorithm

The Ricart-Agrawala algorithm is a permission-based distributed mutual exclusion protocol that builds on 
Lamport's synchronization principles and optimizes message complexity. It fundamentally relies on FIFO 
communication channels and two message types: REQUEST for entering the critical section and REPLY 
for granting access.

Key Features and Steps
● Each process sends a REQUEST, timestamped by its Lamport-style logical clock, to every other 

process when it wants to enter its critical section. 
● Receiving processes use the timestamp to compare priorities: if the incoming request's timestamp is 

earlier (higher priority), and the receiver is not in its own critical section, it sends a REPLY 
immediately. Otherwise, the REPLY is deferred until the receiver exits the critical section. 

● A process can only enter its critical section after receiving a REPLY from every other process, 
ensuring the earliest request in logical time always proceeds first. 

● Message complexity is optimal, requiring only 2(N−1) messages for each critical section entry 
(REQUESTs and REPLYs), significantly reducing overhead compared to earlier algorithms. 



Correctness and Fairness
● Timestamps ensure strict ordering; lower (earlier) timestamps always take priority over higher ones. 
● Starvation is prevented because every deferred REPLY is eventually sent when a process 

completes its critical section. 
● Deadlock is avoided as the algorithm guarantees progress for the request with the smallest 

timestamp. 
● The approach optimizes overhead by removing the need for explicit RELEASE messages, relying 

instead on deferred REPLYs after the critical section is released.



Maekawa’s Algorithm
Maekawa’s algorithm works by giving each site a predefined group of sites called its request set. 

● (M1) When a site wants to enter its critical section, it must get permission from every site in this 
group. The key idea is that the request sets overlap: any two sites’ request sets share at least one 
common site. Because of this overlap, at least one site will always see both requests if two sites 
request the critical section at the same time. This common site acts as the mediator, ensuring that 
only one request is allowed to proceed.

● (M2) Each site is allowed to give out permission to only one requester at a time. This means a site 
cannot send more than one REPLY message without first receiving a RELEASE message for the 
previous permission that it granted. 

If a new REQUEST arrives while a site has already granted permission to someone else, the request 
cannot be granted immediately. Instead, it is placed in a queue. The queued request will be served later, 
but only after the site receives a RELEASE message from the currently permitted site. This rule maintains 
mutual exclusion across the entire system.



Two main conditions, M1 and M2, ensure that the algorithm works correctly. Conditions M3 and M4 are 
additional improvements. 

● Condition M3 ensures that every site has a request set of the same size. This balances the amount 
of work each site performs when handling mutual exclusion requests. 

● Condition M4 ensures that every site is asked for permission by the same number of other sites. 
This keeps the “responsibility load” evenly distributed, so no single site becomes a bottleneck.



Requesting the Critical Section
When a site Si wants to enter its critical section, it sends a REQUEST(i) message to every site in its 
request set Ri. These sites serve as a group whose approval is required before Si can proceed.

When a site Sj receives a REQUEST(i), it first checks whether it has already given permission (a REPLY 
message) to another site since the last time it received a RELEASE.

● If Sj has not granted permission to anyone, it is free to approve Si’s request and immediately 
sends REPLY(j) to Si.

● If Sj has already granted permission, it cannot approve Si’s request at that moment, so it places 
the request in a queue for later handling.

This queueing approach ensures that Sj deals with incoming requests one at a time, in the order received, 
and only grants permission when it is safe to do so.

Across the entire request set Ri, Si will be allowed to enter the critical section only after it receives a 
REPLY from every site in Ri. This guarantees mutual exclusion because all required sites have explicitly 
granted permission before Si enters the critical section.



Releasing the Critical Section
Once Si finishes executing its critical section, it must inform all the sites in its request set Ri that it no 
longer needs the permission they gave. To do this, Si sends a RELEASE(i) message to every site in Ri.
This message tells those sites that the permission previously granted to Si is no longer in use.

When a site Sj receives a RELEASE(i) message from Si, it performs one of two actions, depending on its 
queue:

1. If Sj’s queue has waiting requests

Sj now becomes free to grant permission again. It looks at the next request in its queue, sends a 
REPLY(j) to that site, and removes that request from the queue. 

2. If Sj’s queue is empty

Sj simply updates its internal state to show that it is no longer holding an outstanding REPLY. In other 
words, it is now ready to immediately grant permission to the next REQUEST it receives.

This behaviour ensures that each site grants permission fairly and in proper order, and that no site holds 
permission longer than necessary.


