4

N

Peer-to-Peer

Lesson 10

Characteristics of P2P Networks

A peer-to-peer (P2P) network is an application-level overlay where resources such as files or multimedia
content are shared directly across user machines. Every node is equal in capability and role, and each
node can simultaneously behave as both a client and a server. Nodes communicate directly with each
other without relying on centralised servers.

P2P systems offer high scalability because the addition of new peers increases both resource availability
and capacity. They support low-cost expansion, entry and exit of nodes, and dynamic insertion or deletion
of data objects. The continuous joining and leaving of nodes, called churn, is a natural behaviour in these
networks. Well-designed P2P overlays aim to make churn transparent so ongoing operations are not
disrupted. Another key property is self-organisation: these networks operate efficiently even without
dedicated infrastructure or administrative authority.

P2P vs Client-Server Networks

In the client-server model, a centralised server
rovides services while clients solely consume
Ehem. Roles are fixed and hierarchical.
Communication patterns are predominantly Client Server Architecture Peer-to-Peer Architecture
one-to-many, and the server becomes a bottleneck Server

and a single point of failure.

In P2P networks, all nodes are equal and able to o |
serve and request data from one another. There is A" | [
no central authority coordinating interactions. (] “e®
Nodes cooperate by directly exchanging = ==, (=3 l
information, which removes the need for B] ® Client

specialised servers. This equality of roles Client @ ® i
enhances scalability because the system’s [T
capacity grows naturally as more peers join. Client

Moreover, resource sharing depends on user Peer2
machines rather than dedicated servers, allowing

large-scale distribution of files or objects.

L] L]

Peerl

Churn in P2P Systems

Churn refers to the continuous entry and departure of peers from the P2P network, as well as dynamic
insertion and deletion of objects. This behaviour arises because end-user devices connect and disconnect
at will.

Churn can disrupt routing, lookup operations and availability of data. To minimise these disruptions, P2P
overlays aim to make the effects of churn as transparent as possible through replication, dynamic routing
adjustments and decentralised maintenance. The goal is to ensure stable performance even under high

rates of peer turnover.

DNS Limitations and How P2P Overcomes Them

Traditional distributed systems rely on DNS to map host names to IP addresses. DNS depends on
dedicated servers organised in a fixed hierarchy. Routing information must be manually configured to
allow clients to navigate the DNS tree. DNS can only locate hosts or services, not arbitrary data objects
stored on end-user devices. Hostnames must follow administrative structures, further limiting flexibility.

P2P networks eliminate these constraints by allowing direct location of arbitrary data objects without
centralised servers. Lookup operations occur through decentralised routing within the overlay, making the
system more flexible and scalable. Peers can locate content regardless of where it resides, which avoids
the rigid administrative boundaries of DNS.

Examples of Well-Known P2P Networks

Several P2P networks support distributed file sharing across user machines.
Common examples include:

Napster — early hybrid P2P system for music sharing.

Gnutella — fully decentralised file-sharing network.

Freenet — anonymous P2P platform for distributed file storage.

Pastry — structured P2P overlay for routing and object location.

Chord - structured P2P lookup protocol based on consistent hashing.

CAN (Content Addressable Network) — structured P2P system using multi-dimensional coordinate
space for object lookup.

These systems illustrate different P2P routing strategies, degrees of decentralisation
locating objects without central servers.

Self-Organisation and Scalability in P2P Networks

A maijor strength of P2P networks is their ability to self-organise without prior infrastructure. Nodes
independently maintain routing state, adjust to churn and participate in data lookup and replication.
Because each new peer contributes resources such as storage and CPU power, the total system capacity
increases as the network grows.

This allows P2P overlays to scale to millions of users while maintaining acceptable performance. The
decentralised nature avoids bottlenecks and ensures that no single machine becomes a performance
limiter.

Advantages of P2P Overlays for Resource Sharing

P2P overlays allow flexible distribution of data stored across end users rather than relying on central
servers. This makes them suitable for sharing large volumes of files, multimedia documents and other
objects. They offer low entry and exit costs, support dynamic reconfiguration, and operate efficiently
without administrative control. The decentralised architecture ensures robustness and fault-tolerance
while accommodating unpredictable user behaviour.

Characteristics and Performance Features of P2P Systems

P2P systems are self-organising, meaning that nodes independently join and maintain the network
without central administration. They operate under distributed control, with no single point managing
decisions. All nodes have role symmetry, enabling any peer to act both as a server and client.

Features such as anonymity ensure that peers generally do not know each other’s identities. Efficient
naming mechanisms allow objects or nodes to be referenced and located. Security mechanisms such as
authentication and trust are integrated into the overlay.

On the performance side, P2P networks provide large aggregated resources, including combined
storage, CPU power, and bandwidth. They support fast searching for machines and objects, and they are
scalable, improving performance as more nodes join. They handle churn efficiently through mechanisms
that maintain stability even as nodes frequently enter or leave. Naming allows peers to select
geographically close servers, while redundancy in storage and routing paths contributes to resilience.

Napster Architecture Overview

Napster was an early and widely used P2P file-sharing system. It employed a server-mediated,
centralised index architecture. Clusters of servers maintained direct indices of the files available across
all participating clients. Although file transfer occurred directly between users, the lookup stage relied on

this centralised directory.

Each Napster server cluster stored and maintained metadata describing the files that clients could share.
The servers enabled the discovery of peers who possessed the requested content and facilitated the initial

connection setup.

Information Stored by the Napster Central Server

The central server maintained a directory for every registered client. For each client, it stored:

e the client’s IP address and port,
e the offered bandwidth,
e information about the files the client allowed others to download.

This directory was essential for mapping a desired file to the specific hosts that stored it. It played the role
of a large metadata index enabling rapid lookup.

Napster File Search and Download Process

The basic operational steps were:

1.

5.

Thus, the server handles file discovery, while actual transfer is peer to peer.

Client contacts a meta-server, which assigns a lightly loaded server from one of the nearby server
clusters.

Client connects to the assigned server and submits its query along with its own identity.

The server responds with a list of users who possess the requested file, along with details about
those users and their shared files.

Client chooses a peer from the provided list for downloading. The server supplies the necessary
address information enabling the client to initiate a direct P2P connection.

The client and selected peer establish a direct transfer session to download the file.

Anonymity and Directory-Based Lookup in Napster

Users in Napster were generally anonymous to each other. They interacted through directory
information rather than direct identity exchange. The central directory served as a mapping mechanism: it
linked a file name to the IP address of peers offering that file. Clients relied on this mapping to determine
from where the content should be downloaded.

This separation of lookup (via servers) and transfer (peer to peer) preserved anonymity between users
and simplified file discovery.

Indexing Questions

Explain the three types of data indexing in P2P systems: centralised, local, and distributed.
What is distributed indexing in P2P networks? Why is it challenging?

Explain local indexing with its usage in P2P overlays.

Describe centralised indexing with examples such as DNS or Napster.

What is the role of indexing in P2P networks? Explain how indexing enables data independence.

abrowbd-~

Role of Data Indexing in P2P Systems

In a P2P network, each data object must be identified so that it can be located regardless of its physical

storage location.
Indexing provides this identification and enables data independence, allowing applications to access

objects without needing to know where they reside.

The slides classify indexing into three types:

e Centralised indexing
e Local indexing
e Distributed indexing

Centralised Indexing

Centralised indexing uses one or a small number of central servers to store index entries pointing to

data located on many peers.
All lookup requests are sent to this central directory.

Examples:

e DNS lookup (maps names to IP addresses)
e Early P2P systems like Napster, which used a central directory server to maintain references to

shared files

Characteristics:

e Simple and fast lookup
e Single point of failure
e Not scalable for large networks

Local Indexing

Local indexing requires each peer to index only its own local data objects.
If an object is remote, it must be searched for in the network.

e Local indexing is typically used in unstructured overlays
e Searching involves broadcast or flooding since peers do not maintain global knowledge

Characteristics:

e No central authority
e \ery easy to maintain
e Works well in networks where data is spread unpredictably

Distributed Indexing

Distributed indexing stores index entries across many different peers, rather than on a single server or

only locally.
e Indexes are scattered across peers in the P2P overlay
e The overlay must provide a structure to access them
e This is the most challenging indexing approach
e A major mechanism used is the Distributed Hash Table (DHT)

Features of DHTs:

Each DHT differs in hash mapping strategy
Different search algorithms

Varying lookup diameter

Fault-tolerance levels

Ability to handle churn resiliently

Characteristics:

e Highly scalable
e Avoids central bottlenecks
e Complex to maintain under dynamic peer behaviour

Explain types of data indexing in P2P networks

Types of Data Indexing in P2P Networks

P2P systems identify data using indexing, which provides physical data independence and allows applications to
access objects without knowing their exact storage location. The indexing mechanisms used in P2P overlays are:

1. Centralised Indexing:
A central server (or a small set of servers) stores index references to objects located on many peers. Lookups are

performed by querying this directory. DNS and early P2P systems like Napster used centralised directory lookup.
This approach gives fast search but introduces a single point of failure.

2. Local Indexing:

Each peer maintains index entries only for its own local data objects. Remote objects must be searched in the
network. This method is used in unstructured overlays, where no global structure exists. Local indexing requires
minimal maintenance but can lead to expensive search operations.

3. Distributed Indexing:
Index entries are distributed across multiple peers in the overlay. A structured mechanism
Hash Table (DHT), is used to locate these scattered indexes. DHTs provide scalable Ig
resilience to churn, though distributed indexing is more complex to implement than

Overlays Questions

1. Explain structured overlays in P2P networks. How does deterministic mapping support fast lookup?
2. Describe the role of hash functions in structured overlays. Why are arbitrary queries difficult to

support?

3. What are unstructured overlays? Explain their characteristics and the impact on search
performance.

4. Discuss the advantages and disadvantages of unstructured overlays. When are they considered
efficient?

5. Compare structured and unstructured overlays in terms of file placement, indexing, churn handling,
and query performance.

Explain structured overlays in P2P networks. How does deterministic mapping support
fast lookup?

Structured overlays are peer-to-peer networks in which the topology follows a well-defined structure, and
each file or data object is placed at a precise location determined by an algorithmic mapping. This
deterministic mapping ensures that the location of a file is not random but computed from a specific
attribute of the data, typically using a hash function. Because each key is mapped to a predictable
position, the system can perform a fast and guaranteed lookup without relying on exhaustive search.
These overlays operate as lookup systems, where the mapping from keys to values is handled using a
hash-table-like interface built on top of the overlay’s regular structure. As a result, queries can be resolved
efficiently by routing them along the structured topology until they reach the node responsible for the
requested key. This deterministic path reduces uncertainty and enables very low lookup time.

Describe the role of hash functions in structured overlays. Why are arbitrary queries
difficult to support?

Hash functions play a central role in structured overlays by converting file attributes into numerical keys
that determine the exact storage location of the data in the overlay. This mapping of keys to values
ensures that the placement of objects is even and predictable, allowing the system to locate any file with
high efficiency. However, this same deterministic mapping becomes a limitation when supporting more
complex or semantic queries. Since the mapping is typically based on a single attribute, such as the file
name, length, or a predetermined function, queries requiring relationships beyond this attribute cannot be
processed directly. Range queries, attribute-based queries, or exact keyword searches cannot be
executed naturally because the hash function destroys the semantic relationships between data objects.
Therefore, only exact-key lookups are supported efficiently, while arbitrary queries require additional
mechanisms or become impractical.

What are unstructured overlays? Explain their characteristics and the impact on search
performance.

Unstructured overlays are peer-to-peer systems that do not impose any controlled or predefined structure
on the network topology. Nodes connect in an ad-hoc manner, and file placement is not governed by a
global mapping or algorithm. Each peer typically maintains an index only of its local data, which means
that locating remote objects requires a network-wide search. Node joins and departures are simple to
accommodate because the overlay does not depend on a rigid structure, and the topology adjusts
naturally as peers join or leave. However, the absence of structured placement leads to high search
overhead, since queries must be flooded or propagated widely across the network. Searches may take
considerable time and, in some cases, fail altogether even when the object exists. As a result,
unstructured overlays tend to suffer from high message overhead and variable performance during lookup
operations.

Discuss the advantages and disadvantages of unstructured overlays. When are they
considered efficient?

Unstructured overlays offer considerable flexibility because they allow complex queries, such as exact
keyword queries, range queries, and attribute-based searches. These queries can capture the semantics
of the data, enabling richer search capabilities than deterministic structured systems. Another advantage
is their resilience to churn: rapid joining and departure of nodes does not degrade performance
significantly because the overlay functions without a strict topology. Despite these benefits, unstructured
overlays face major drawbacks. Searches may be slow or unreliable, requiring a large number of
messages to locate data, and the overlay may still miss existing objects due to incomplete propagation.
This creates scalability challenges for very large networks. Nevertheless, unstructured overlays become
efficient when the system has some degree of data replication, when users accept best-effort search
results, and when the network size is moderate enough that flooding-based search does not overwhelm
the system.

Compare structured and unstructured overlays in terms of file placement, indexing,
churn handling, and query performance.

Structured and unstructured overlays differ fundamentally in how they organise data and manage lookup
operations. In structured overlays, file placement is controlled by a deterministic algorithm, usually
implemented via a hash function that maps keys to fixed locations in the overlay. This results in
predictable indexing, fast lookup, and an efficient routing mechanism.

Unstructured overlays, by contrast, do not define where files are placed; each node stores whatever data
it holds locally, and indexing is limited to these local objects. As a result, search operations may require
network-wide exploration.

In terms of churn handling, unstructured overlays typically have an advantage because they can absorb
frequent node arrivals and departures without disturbing a global structure. The topology adapts naturally,
and no complex rebalancing is needed. Structured overlays require adjustments whenever peers join or
leave, since keys and routing tables must be updated to preserve the deterministic mapping, though this
process remains manageable in well-designed systems.

Query performance also differs significantly. Structured overlays excel at exact-key lookups, providing fast
and guaranteed search performance. However, they struggle with semantic or range-based queries
because the hash mapping removes meaningful relationships among data. Unstructured overlays,
conversely, support a wide variety of complex queries but often incur high message overhead and
unpredictable delay. Overall, structured overlays prioritise efficiency and determinism, while unstructured
overlays emphasise flexibility and robustness under highly dynamic conditions.

Explain the iterative prisoner’s dilemma and its relevance to P2P system design.

The iterative prisoner’s dilemma models repeated interactions between rational but selfish participants,
where each round offers the choice to cooperate or betray. In a P2P system, this mirrors peers deciding
whether to upload data (cooperate) or only download without contributing (betray). When the game is
played only once, betrayal appears rational, but across repeated rounds, both participants benefit more by
sustaining cooperation because each remembers prior behaviour and adjusts future responses. This
repeated interaction pushes the system towards an equilibrium where cooperation emerges as the optimal
long-term strategy. In the context of P2P networks, this outcome reflects the ideal solution in which peers
continue sharing data, despite the temptation to free-ride. The model therefore demonstrates why
practical P2P systems must encourage behaviour that aligns long-term benefits with cooperative
participation.

Describe the tit-for-tat strategy and explain how BitTorrent applies it to handle the
leeching problem.

Tit-for-tat is a simple reciprocal strategy in which a participant begins by cooperating and then repeats
whatever action the other party took in the previous round. This encourages sustained cooperation
because betrayal is met with an immediate reciprocal penalty in the next interaction. BitTorrent adopts this
strategy by allowing uploads primarily to those peers who themselves upload data. A peer that contributes
bandwidth and shares pieces of the file is rewarded with higher download rates, while a peer that refuses
to upload is deprioritised and receives little or no data. By mirroring past behaviour, BitTorrent suppresses
leeching, promotes fairness, and maintains high throughput in the swarm. The tit-for-tat approach thus
enforces cooperation even among selfish peers, ensuring that the system operates efficiently.

What is trust or reputation management in P2P systems, and why is it required?

Trust or reputation management refers to the mechanisms used to estimate how reliable or cooperative a
peer is within a P2P network. Since peers are autonomous and often anonymous, systems cannot
assume that every node will behave honestly; some may provide corrupted data, leave abruptly, or fail to
reciprocate uploads. The problem is intensified by high churn, where peers frequently join and leave,
making it difficult to gauge reliability. Trust mechanisms therefore record or infer previous behaviour to
estimate whether a peer is likely to act correctly. These approaches help users judge the quality of data
sources, reduce exposure to malicious peers, and ensure that transactions take place between reliable
participants. Without trust management, the system may degrade due to selfish or adversarial behaviour,
reducing both performance and data quality.

Discuss the main challenges involved in designing trust management protocols in
P2P systems.

Trust management in P2P systems faces several fundamental challenges. First, communication
messages used to exchange trust information can be intercepted or forged, making the system
vulnerable to man-in-the-middle attacks or Sybil attacks in which an adversary creates numerous fake
identities to manipulate trust values. Second, because no peer has a complete global view of the
system, it must rely on indirect information from other peers, which opens the possibility of false reports,
collusion, and reputation distortion. Third, peers in P2P networks are highly transient, and trust values
must adapt to continuous node arrivals and departures. This requires careful balancing so that trust
estimates remain responsive to recent behaviour while still retaining meaningful historical evidence.
Fourth, different peers may use different metrics to evaluate trust, such as accuracy of data, rate of
cooperation, or consistency of responses, making aggregation and interpretation difficult. Finally, trust
protocols add communication and computational overhead; designing them to be lightweight while still
secure is a significant challenge. Together, these issues make trust management a complex but
essential component of robust P2P system design.

