Language Models ‘

API

Lesson 10 & 11
RAG

Introduction to OpenAl APIs

OpenAl provides a collection of programmable interfaces that allow artificial intelligence features to be
integrated into software applications. These interfaces expose core Al tasks such as text generation,
speech processing, vision-based image generation, and vector embeddings.

In total, five categories of APls are offered. Each category corresponds to a particular capability area, and
understanding the purpose of each API helps in choosing the correct tool for chatbot development,
content generation, recommendation tasks, or transcription systems.

e The five API categories covered in the slides are:
Chat or Completion API

Embedding API

DALL-E API

Whisper API

and Fine-tuning APL.

Access Requirements for Using the APIs

Before initiating any interaction with the APls, an
access token is required. This token functions
as an authentication key, permitting secure
communication between a user's program and
the OpenAl servers.

The key is created under the AP| Keys section
of the OpenAl platform dashboard. The usage of
the APl is also viewed under the dashboard in
the Usage section. These two dashboard areas
are essential for both setup and monitoring.

The OpenAl documentation homepage provides
the starting point for understanding how the
APls work.

[Documentation]—)[

API Key

OpenAl dashboard

|

|

Code

access token

1

API Usage

OpenAl dashboard

|

Base Code Setup (Google Colab or VS Code)

A minimal Python setup is sufficient to start working with the APIs. The openai package is installed first.
After installation, the access token is assigned to the openai.api_key attribute.

Once the key is set, the application is ready to send requests for any capability such as chat generation,
embeddings, or image creation.

This foundational snippet serves as the starting point for all API interactions.

Next slide we will take a look at a sample code snippet for the same.

Sample Code Snippet

Install the package (run this in your terminal first):

pip install openai

from openai import OpenAl

Create a client using your API key

client = OpenAI(api_key="YOUR_API_KEY_HERE")

Example: Send a simple chat request

response = client.chat.completions.create(
model="gpt-4.1",
messages=|

{"role": "user", "content": "Hello, can you summarise the purpose of this API?"}

)

print(response.choices[0].message["content"])

This snippet:

1. Installs and imports the openai package.
2. Sets the API key directly when creating the OpenAl client.
3. Demonstrates a minimal chat completion request using a current model.

Chat APl or Completion API

The Chat or Completion API enables conversational artificial intelligence. It allows natural language
responses to be generated and supports conversations that continue across multiple turns.

Context from earlier messages in the same session can be recognised, enabling interactions that
resemble human conversation.

This capability is commonly used in chatbot systems, customer support workflows, and virtual assistance
tools.

Models such as gpt-3.5-turbo, gpt-4, and gpt-4o-mini are examples of model families that can be invoked
for such tasks.

A short scenario: When a customer asks about an order, receives an answer, and then asks a related
question, the follow-up can be understood within the same context rather than as a

Embedding API

The Embedding API converts text into
high-dimensional vectors that represent
meaning. These vectors make similarity
matching and semantic comparison possible,
since related sentences or documents tend to
appear close to each other in vector space.

This capability supports information retrieval,
sentiment classification, recommendation
systems, and search applications that rely on
meaning rather than simple keywords.

%

[0.24]
1.53
-0.98
0.46

| 219 |

Numerical vector

DALL-E API

The DALL-E API generates images from textual descriptions. When a description such as “a sunset
behind a modern city skyline” is provided, the system produces a visual representation of that description.

This is applied in creative content generation, advertising material development, and early prototyping
where rapid illustration is useful.

The focus here is that text is interpreted to produce images, enabling visual output directly from
descriptive language.

Whisper API

Whisper enables the conversion of spoken audio into text. It performs transcription and can also support
translation across multiple languages.

High accuracy is achieved for clear audio, making it suitable for lecture transcription, meeting
documentation, or accessibility-oriented captioning.

For example, an audio recording of a classroom explanation can be processed to produce a readable
transcript.

Fine Tuning API

Purpose of Fine-tuning

Fine-tuning is used to adapt an existing model such as
GPT-40-mini using a custom dataset so that the model
performs specialised tasks more effectively.

The process allows domain-specific behaviour to be
added, making the resulting model more suitable for
focused applications.

Examples mentioned include customer service bots
designed for a specific organisation, educational
systems shaped for a particular curriculum, and
specialised Al tools created for industry-specific
requirements.

T Custom
1 Dataset N

U U

General — Fine-Tuned
LLM LLM

Fine-Tuning

Pre-requisite for Fine-tuning

A dataset must be prepared before fine-tuning begins.
The dataset is required in JSONL (JSON Lines) format where each line is an object containing two fields:

e prompt containing the input text
e and completion containing the expected output text.

An example:

{"prompt": "Is the dissertation project a group project or an individual
project"”,

"completion”: "It has to be an individual project. Group projects are not
allowed."}

This format ensures that the fine-tuning process can clearly identify what response s
each input pattern.

Steps in Fine-tuning an LLM

Fine-tuning follows a sequence of steps. These steps involve:

A pre-trained model such as GPT-40-mini is selected.

A relevant dataset is gathered in JSONL format.

The dataset is pre-processed to remove errors or inconsistencies.

The fine-tuning procedure is run to train the selected model on the prepared dataset.

The resulting model adapts its behaviour to the target task while retaining the language knowledge
learned during its original training.

o M v bdh =

This sequence produces a focused model that performs reliably within its intended domain.

Rivet

Rivet functions as an open source visual programming environment designed for building Al agents
powered by large language models. It provides a space where prompt logic can be organised visually,
making it easier to understand how different parts of an Al agent interact.

Prompt graphs can be created, modified, and refined directly inside Rivet. Once these prompt graphs
reach the desired structure, they can be executed within an application without rewriting the logic
elsewhere. This creates a smoother workflow for experimenting with prompt structures and testing their
behaviour.

Rivet supports teamwork by enabling groups to design, debug, and collaborate on complex prompt
graphs. This is valuable when multiple contributors need to refine the behaviour of an Al agent or
inspect why a particular prompt chain produces a certain output.

After the design process, these prompt graphs can be deployed in an organisation’s own environment,
keeping the system consistent with internal requirements.

A simple diagram showing interconnected prompt nodes flowing into an Al agent
how Rivet manages complex LLM prompt logic.

Retrieval Augmented Generation (RAG)

Introduction and Core Idea

Retrieval Augmented Generation represents an approach in which retrieval mechanisms and generative
models are combined. The intention is to improve how Al systems understand queries and produce
human-like text.

RAG relies on the strengths of two components. Retrieval mechanisms bring relevant information from
stored sources, and generative models then use that information to form coherent responses.

This combination enables responses that stay grounded in external knowledge rather than relying only on
the model’s internal training.

Why is Retrieval-Augmented Generation important?

LLMs are a key artificial intelligence (Al) technology powering intelligent chatbots and other natural
language processing (NLP) applications. The goal is to create bots that can answer user questions in
various contexts by cross-referencing authoritative knowledge sources. Unfortunately, the nature of LLM
technology introduces unpredictability in LLM responses. Additionally, LLM training data is static and
introduces a cut-off date on the knowledge it has.

Known challenges of LLMs include:
e Presenting false information when it does not have the answer.
e Presenting out-of-date or generic information when the user expects a specific, current response.
e Creating a response from non-authoritative sources.
e Creating inaccurate responses due to terminology confusion, wherein different training sources use
the same terminology to talk about different things.

https://aws.amazon.com/what-is/artificial-intelligence/
https://aws.amazon.com/what-is/chatbot/
https://aws.amazon.com/what-is/nlp/
https://aws.amazon.com/what-is/nlp/

You can think of the Large Language Model as an over-enthusiastic new employee who refuses to stay
informed with current events but will always answer every question with absolute confidence.

Unfortunately, such an attitude can negatively impact user trust and is not something you want your
chatbots to emulate!

RAG is one approach to solving some of these challenges. It redirects the LLM to retrieve relevant
information from authoritative, pre-determined knowledge sources. Organizations have greater control
over the generated text output, and users gain insights into how the LLM generates the response.

https://aws.amazon.com/what-is/large-language-model/

Key Terminologies in RAG

Prompt

A prompt refers to the user’s query. It initiates the entire process and guides the model’s behaviour.

Context

Context refers to internal or external information used to construct the response. Internal context
corresponds to the model’s built-in knowledge. External context refers to documents or data retrieved at

runtime.

LLM

The term LLM refers to large language models such as GPT-3.5, GPT-4, GPT-40, GPT-40-mini, or
LLama3. These models generate the final answers once context is supplied.

Retriever

A retriever searches a knowledge base and selects information relevant to the user’s query. This step
ensures the LLM receives only the most suitable context.

Embedding

An embedding is a numerical representation of text. It captures meaning in a vector form so that related
pieces of text appear closer together. A diagram of vectors distributed in a space would assist
understanding.

Vector Store

A vector store is a database that stores embeddings. It supports similarity search so that relevant chunks
can be located efficiently when queries arrive.

What are the benefits of Retrieval-Augmented Generation?

RAG technology brings several benefits to an organization's generative Al efforts.

Cost-effective implementation

Chatbot development typically begins using a foundation model. Foundation models (FMs) are
APl-accessible LLMs trained on a broad spectrum of generalized and unlabeled data. The computational
and financial costs of retraining FMs for organization or domain-specific information are high. RAG is a
more cost-effective approach to introducing new data to the LLM. It makes generative artificial intelligence
(generative Al) technology more broadly accessible and usable.

Current information

Even if the original training data sources for an LLM are suitable for your needs, it is challenging to
maintain relevancy. RAG allows developers to provide the latest research, statistics, or news to the
generative models. They can use RAG to connect the LLM directly to live social medi
or other frequently-updated information sources. The LLM can then provide the |

https://aws.amazon.com/what-is/generative-ai/
https://aws.amazon.com/what-is/foundation-models/

Enhanced user trust

RAG allows the LLM to present accurate information with source attribution. The output can include
citations or references to sources. Users can also look up source documents themselves if they require
further clarification or more detail. This can increase trust and confidence in your generative Al solution.

More developer control

With RAG, developers can test and improve their chat applications more efficiently. They can control and
change the LLM's information sources to adapt to changing requirements or cross-functional usage.
Developers can also restrict sensitive information retrieval to different authorization levels and ensure the
LLM generates appropriate responses. In addition, they can also troubleshoot and make fixes if the LLM
references incorrect information sources for specific questions. Organizations can implement generative
Al technology more confidently for a broader range of applications.

How does Retrieval-Augmented Generation work?

Without RAG, the LLM takes the user input and creates a response based on information it was trained on
or what it already knows. With RAG, an information retrieval component is introduced that utilizes the user
input to first pull information from a new data source. The user query and the relevant information are both
given to the LLM. The LLM uses the new knowledge and its training data to create better responses. The
following sections provide an overview of the process.

Create external data

The new data outside of the LLM's original training data set is called external data. It can come from
multiple data sources, such as a APIs, databases, or document repositories. The data may exist in various
formats like files, database records, or long-form text. Another Al technique, called embedding language
models, converts data into numerical representations and stores it in a vector database. This process
creates a knowledge library that the generative Al models can understand.

Retrieve relevant information

The next step is to perform a relevancy search. The user query is converted to a vector representation
and matched with the vector databases. For example, consider a smart chatbot that can answer human
resource questions for an organization. If an employee searches, "How much annual leave do | have?"
the system will retrieve annual leave policy documents alongside the individual employee's past leave
record. These specific documents will be returned because they are highly-relevant to what the employee
has input. The relevancy was calculated and established using mathematical vector calculations and
representations.

Augment the LLM prompt

Next, the RAG model augments the user input (or prompts) by adding the relevant retrieved data in
context. This step uses prompt engineering techniques to communicate effectively with the LLM. The
augmented prompt allows the large language models to generate an accurate answer to user queries.

Update external data

The next question may be—what if the external data becomes stale? To maintain current information for
retrieval, asynchronously update the documents and update embedding representation of the documents.
You can do this through automated real-time processes or periodic batch processing. This is a common
challenge in data analytics—different data-science approaches to change management can be used.

The following diagram shows the conceptual flow of using RAG with LLMs.

Tl

Search Relevant]

> Knowledge
Information J Sources
2) Query
Relevant
3 Information
Prompt for
Query Context
Generated
Text 5
Response
Prompt
+
4 Qu:ery >
Enhanced

Context Large Language Model EndPoint

What is the difference between Retrieval-Augmented Generation
and semantic search?

Semantic search enhances RAG results for organizations wanting to add vast external knowledge sources
to their LLM applications. Modern enterprises store vast amounts of information like manuals, FAQs,
research reports, customer service guides, and human resource document repositories across various
systems. Context retrieval is challenging at scale and consequently lowers generative output quality.

Semantic search technologies can scan large databases of disparate information and retrieve data more
accurately. For example, they can answer questions such as, "How much was spent on machinery repairs
last year?” by mapping the question to the relevant documents and returning specific text instead of
search results. Developers can then use that answer to provide more context to the LLM.

Conventional or keyword search solutions in RAG produce limited results for knowledge-intensive tasks.
Developers must also deal with word embeddings, document chunking, and other complexities as they

manually prepare their data. In contrast, semantic search technologies do all the wor
preparation so developers don't have to. They also generate semantically relevan
words ordered by relevance to maximize the quality of the RAG payload.

Types of Embeddings

There are several embedding approaches available such as:

OpenAl embeddings suitable for general NLP tasks

BERT embeddings that capture semantic meaning

Sentence Transformer embeddings optimised for sentence and document similarity

DPR (Dense Passage Retriever) embeddings used frequently in open-domain question answering
GloVe embeddings that capture semantic relationships but lack contextual awareness

Vector Stores

There are several options used in RAG systems:

Pinecone, a managed vector database for scalable similarity search

FAISS, an open-source library designed for fast large-scale vector search
Weaviate, a vector database with semantic search capabilities

Milvus, a high-performance open-source vector database

ElasticSearch with KNN plugin for vector-based similarity inside text indices

