
Language Models in Cloud-Native AI
Lesson 9

LLMs, SLMs and Operational Workflows



Introduction

Introduction to API-Driven AI in Cloud-Native Systems
Modern cloud-native applications increasingly rely on AI models exposed through ready-to-use APIs. 
Instead of building models from scratch, organisations integrate language-understanding and 
language-generation capabilities by calling external or managed services. This shift matters because 
API-driven AI removes the burden of training, hosting, and scaling the models, allowing teams to focus on 
business logic while still benefiting from advanced cognitive abilities.

Role of Language Models
The lecture introduces language models as the fundamental engines behind today’s cognitive services. 
These models interpret text, generate responses, extract information, and reason about the context 
contained within enterprise documents. A cloud-native system that uses summarisation, search, contract 
analysis, or conversational interfaces is ultimately powered by a language model sitting behind an API 
endpoint. This lecture prepares you to understand what those models do, why they differ in size and 
capability, and how they influence architectural decisions.



Large Models and Small Models

A central learning point is the difference between Large Language Models (LLM) and Small Language 
Models (SLM). 

● Large models offer broad general intelligence because they are trained on enormous datasets and 
contain a very high number of parameters. 

● Small models are designed for efficiency and targeted performance. They are useful in scenarios 
with hardware limits, strict cost controls or a need for domain specialised behaviour. 

API Based Use versus Custom Development

This is a common architectural decision. Teams must choose between using a pre trained model through 
an API or developing a customised model that runs in their own environment. 

● API based access provides convenience, reliability and speed of adoption. 
● Custom development provides control, privacy and domain specification. Many exam questions ask 

students to reason through this trade off.



Operational Management of Language Models

This refers to the practices required to monitor, evaluate, update and fine tune models once they are in 
production. Continuous measurement is essential because model behaviour changes with new data and 
with evolving business requirements. 



Language Models

Understanding Language Models

Large Language Models are defined as deep learning systems trained on extensive text datasets so that 
they can recognise, extract, summarise, predict and generate natural language. Their training material 
typically includes books, articles and web pages, which exposes them to a wide range of vocabulary, 
sentence structures and semantic patterns. Through this exposure, they develop the ability to interpret 
context, follow reasoning, and produce text that remains grammatically correct and semantically 
appropriate.



How Language is Learned

Training is performed on large text corpora, which may include books, articles and web pages. Exposure 
to such diverse material allows the model to learn the relationships between words, the dependencies 
across phrases and the contextual cues that affect meaning. This process enables the model to infer what 
words are likely to appear next, how sentences are structured and how ideas progress. As a result, the 
model can answer questions, draft text, summarise content or carry out translation without being explicitly 
programmed for each narrow task.



Large Language Models (LLMs)

Nature of Large Language Models
Large Language Models are presented as deep learning systems trained on very extensive text datasets. 
Their purpose is to recognise patterns, understand context and generate text that is coherent and 
meaningful. Their training typically includes material from books, articles and web pages. Through this 
exposure, they develop the ability to perform tasks such as summarisation, translation, question 
answering and text completion. The defining characteristic of an LLM is the scale of its parameters, which 
allows it to capture subtle relationships within language.

Scale and the Meaning of Large
The designation of a model as large arises from its parameter count. Parameters are the trainable 
components within the neural network that adjust during training. High parameter counts allow the model 
to represent complex patterns in language. Typical ranges that qualify as large, with the example of 
GPT-3 containing one hundred and seventy five billion parameters. This quantity enables very fine 
grained modelling of syntax, semantics and context. 



Role of Parameters in Language Modelling

Parameters encode the relationships between linguistic elements. When text is processed, these 
parameters influence how meaning is interpreted and how responses are generated. During training, the 
model predicts the next token in a sequence and then adjusts its parameters to reduce the prediction 
error. Repeated exposure to large volumes of text gradually shapes the internal structure of the model, 
allowing it to generate coherent answers to diverse prompts. A simple illustration may be found by 
comparing this process to a decision tree. In a decision tree, parameters determine how data is split at 
each node and what output appears at each leaf. In a language model, the parameters serve a similar role 
of shaping decisions, although the operations are far more complex and involve continuous numeric 
adjustments rather than discrete branches.



A Journey Through a Decision Tree Classifier

A simple decision tree classifier is used to illustrate how model parameters are learned during training. 
These parameters control the internal structure of the tree and determine how predictions are produced.

Decision node splits refer to the points within each internal node where the data is divided according to 
specific feature values. These split positions are learned from the training data. The goal of the learning 
process is to choose split points that maximise the separation between classes. Each split represents a 
decision that influences the subsequent flow of samples down the tree.

In the next slide we will look at some definitions regarding decision tree algorithm and then look at an 
example to understand how it works. 



Definitions
Decision Node Splits

A decision node split is the moment in a decision tree where the data is divided into two or more groups 
based on a feature. It acts like a question the tree asks, for example: “Is the price greater than 1,000?”
The tree learns these questions during training so that each split separates the data in a way that makes 
the classes clearer and easier to distinguish.

Leaf Nodes

A leaf node is the end point of a branch in the decision tree. Once the tree has asked all its questions 
along a path, the leaf node gives the final answer. For classification, this answer is usually the predicted 
class. Everything that flows into that leaf gets the same prediction.

Tree Depth

Tree depth is the number of steps from the root (the first question) down to the deepest leaf (the final 
decision). A deeper tree can capture more detailed patterns because it asks more questions, but if it 
becomes too deep, it starts memorising the data instead of learning general rules, which leads to 
overfitting.



Example Classification
Let us walk through how a decision tree classifier actually works using a simple classification problem. 
Suppose we have a dataset of students, each described by features such as hours studied, attendance 
percentage, and number of assignments completed. The target we want to predict is whether the 
student will pass an upcoming exam.

The journey begins at the root of the tree. The algorithm evaluates all available features and determines 
which one gives the most effective split between students who passed and those who failed. After 
analysing the training data, it might discover that the most informative feature is the number of hours 
studied. If students who study more than four hours per day mostly pass, while those below that 
threshold mostly fail, the first split becomes “Hours studied > 4”.

Now the data is separated into two branches. On the branch where hours studied is greater than four, the 
tree examines the remaining features to decide whether further splitting will improve class purity. It may 
find that attendance still varies significantly, so it introduces a second decision: “Attendance > 80%”. 
Students meeting both conditions (high study hours and high attendance) may form a nearly pure group 
where most students pass, causing this path to terminate at a leaf node labelled “Pass”.



On the other side of the tree, where students study fewer than four hours, the classifier again evaluates 
remaining features. It may discover that assignment completion plays a significant role here. If students 
with low study hours but more than eight completed assignments still tend to pass, the tree adds the 
condition “Assignments completed > 8” and creates a leaf based on the dominant outcome. Those who 
fall below both thresholds may end up in a leaf predicting “Fail”.

● By the time the model finishes building, every path from the root to a leaf represents a chain of 
conditions that captures different patterns present in the data. 

● The tree does not rely on formulas or assumptions; it relies solely on how the training data behaves.
● During prediction, a new student simply travels down the tree. Their feature values are checked 

against each condition until they reach the appropriate leaf, which gives the final result.

This journey illustrates how a decision tree classifier takes raw data, learns the most discriminative 
feature-based splits, and converts them into a structured decision-making process. The result is a model 
that is easy to follow, logically coherent, and able to classify new instances according to patterns extracted 
directly from the data.



Difference Between Parameters and Hyperparameters

A distinction is maintained between parameters and hyperparameters. 

Parameters are learned automatically during training. 

Hyperparameters are chosen before training begins and control aspects of the learning process. In a 
decision tree, examples include maximum depth, minimum samples required to split a node and minimum 
samples required in each leaf. In the context of LLMs, hyperparameters influence how the model learns 
but do not store learned linguistic knowledge. 

Parameters define the model's capacity, while hyperparameters define the conditions under which 
learning occurs.



Hyperparameters in Decision Trees

max_depth
This controls how tall the tree is allowed to grow. A deeper tree can learn very detailed patterns, but if it 
grows too deep, it may start memorising the training data instead of learning from it. Limiting the depth 
keeps the model focused on the most important patterns.

Example: If max_depth = 3, the tree can make at most three decisions in a path. Even if the data allows 
more splits, the tree stops growing after three levels to avoid overfitting.

min_samples_split
This sets the minimum number of data points needed before the tree is allowed to split a node into two 
branches. If you allow splits with only a few samples, the tree can make unreliable decisions. By requiring 
more samples, the tree makes splits only when they are backed by enough evidence.

Example: If min_samples_split = 10, a node must contain at least 10 samples before the tree is allowed 
to create a new split. A node with 8 samples will not split, even if a split looks mathematically possible.



Hyperparameters in Decision Trees
min_samples_leaf
This ensures that every leaf node (final decision point) has a minimum number of samples. If a leaf 
contains only one or two samples, its prediction is unstable. Setting this value prevents the tree from 
creating leaves that are too small, leading to more reliable predictions.

Example: If min_samples_leaf = 5, each leaf must contain at least five samples. If a potential split 
produces leaves with only two samples each, the tree will reject that split.

criterion
This tells the tree how to measure the quality of each possible split. Options like “gini” or “entropy” 
evaluate how pure or mixed the classes are after a split. The tree uses this measure to choose the most 
informative question at each step.

Example: If criterion = "gini", the tree will look for the split that reduces class impurity the most. If a 
dataset has a mix of “Pass” and “Fail”, the tree will pick the feature that creates groups with clearer 
separation between the two.



overfitting
Overfitting happens when a model learns the training data too well, including noise, random fluctuations, 
and patterns that do not actually generalise to new data. Instead of learning the underlying trend, the 
model memorises specific details that are unique to the training set. As a result, the model performs 
extremely well on the data it was trained on, but performs poorly when shown new, unseen data.

Example:
Suppose we train a decision tree to predict whether a student passes an exam based on hours studied 
and attendance. If the tree is allowed to grow very deep, it may create extremely specific rules like:

● “If attendance is 83% and hours studied is 4.1 → Pass”
● “If attendance is 82% and hours studied is 4.0 → Fail”
● “If attendance is 82% but hours studied is 4.05 → Pass”

These splits may perfectly explain the training data, but they are too specific and based on tiny differences 
that do not matter in real life. When the model sees a new student with slightly different values, it may get 
confused and make incorrect predictions.

In short, overfitting is when the model memorises the answers instead of learning the concepts. 
Controlling hyperparameters like max_depth, min_samples_split, and min_samples_leaf helps prevent 
this by stopping the tree from becoming overly detailed.



Training Data Sources
A key dataset is Common Crawl, which consists of hundreds of billions of web pages collected over 
several years. Such datasets expose the model to diverse topics, writing styles and domains. This variety 
allows the model to generalise across many tasks and produce responses that remain contextually 
appropriate in different situations.

When a model is trained on Common Crawl, it is exposed to:

Wide Topical Coverage

The dataset contains content from domains such as e-commerce, computers and electronics, politics, 
medicine, religion, automobiles, and sports. Each domain contributes its own vocabulary, expressions, 
tone, and structure. This breadth allows the model to understand questions or prompts from many subject 
areas, even if the topics differ significantly from one another.

Multiple Writing Styles and Formats

Web text includes product reviews, news articles, blogs, FAQs, discussion posts, guides, and corporate 
pages. Exposure to these formats teaches the model how language is used informally and formally, 
casually and professionally, briefly and in long paragraphs. This supports generalisation across tasks such 
as summarisation, answering questions, explaining concepts, or rewriting text.



Multilingual Content

The dataset contains both English and non-English pages. This multilingual presence enables models to 
develop some degree of cross-lingual understanding. Even when fine-tuned for English tasks, the model 
benefits from having encountered multiple languages because it learns general principles of sentence 
structure, word patterns, and semantic relationships.

Large Quantities of Text

The scale of the dataset matters because the model encounters countless examples of how words are 
used together in different contexts. This repeated exposure teaches the model to identify subtleties such 
as tone, implied meaning, and sentiment. It also helps the model handle unusual or rare expressions, 
since large corpora increase the chance of encountering them.

Real-World Diversity

The web naturally contains inconsistent phrasing, errors, abbreviations, slang, and incomplete sentences. 
Although imperfect, this diversity strengthens a model’s ability to deal with real inputs from users, which 
often contain informal language, spelling variations, or mixed expressions.



Tokenisation and Processing Units

Language models operate on tokens, which are the smallest text units they process. Tokens may 
represent whole words or subdivided word fragments. 

A word like unbelievable is broken into parts such as un, believ, and able because the model cannot store 
every possible word in its vocabulary. Instead, it keeps a smaller set of common pieces. These pieces 
appear in many words, so the model learns them well. When a long or uncommon word appears, it is 
rebuilt from these familiar parts, allowing the model to understand it without needing the full word stored 
separately.

Token count affects both the cost of processing and the limits of the model's context window. A prompt 
with a response consumes a defined number of tokens, and this total determines how much input the 
model can process in a single interaction.



Examples of Prominent LLMs

• GPT-4 (OpenAI)
• LLaMA 3 (Meta)
• Claude 3 (Anthropic)
• Mistral 7B
• PaLM 2 [Google - primarily text]
• Gemini [Google - Multimodal]
• Grok (xAI) [Elon Musk]
• ERNIE 4.0 (Baidu) [Chinese]
• Falcon (Technology Innovation Institute)



Small Language Models (SLMs)

Large Language Models are extremely big. They contain billions or even trillions of parameters, which 
means they need powerful hardware, a lot of memory, and significant computing time to run.

Small Language Models work at a much smaller scale. Instead of billions, they may have only thousands 
to a few million parameters. Because they are lighter, they can run on ordinary machines, laptops, or small 
servers.

This smaller size makes them more practical for organisations or researchers who cannot afford the heavy 
computational demands of very large models. SLMs are easier to deploy, cheaper to operate, and more 
suitable for targeted or domain-specific applications where a giant model is not necessary.



SLM Advantages
Small Language Models give more control and tailoring, meaning the model can be shaped closely to 
the organisation’s specific needs. Since the model is smaller, fine tuning becomes easier and faster, 
allowing it to specialise in tasks such as legal text processing, customer support, medical summaries, or 
policy analysis.

They provide enhanced security, because the entire model can often be hosted inside the organisation’s 
own infrastructure. Sensitive data does not need to be sent outside, which is important for compliance and 
privacy.

SLMs also offer effective performance for focused tasks. A smaller model that is fine tuned can 
outperform a large general model in domains where precision and relevance matter.

They support scalability, because more users or applications can run the model without requiring heavy 
hardware. The reduced size makes deployment and expansion straightforward.

Rapid prototyping becomes possible. Teams can test ideas, build internal tools, or create proof of 
concepts quickly without waiting for long training cycles or high cost compute resources.

Finally, SLMs deliver cost efficiency. They require less memory, cheaper hardware, and lower 
operational expenses. 



Differences Between LLMs and SLMs

Large Language Models contain billions or even trillions of parameters. This scale allows them to 
understand broad contexts, handle complex reasoning, and generate detailed responses across many 
domains. However, they require powerful hardware, large memory, and significant computational 
resources. Running or fine tuning such models is expensive, and they are usually deployed in large 
cloud environments.

Small Language Models contain far fewer parameters, often in the range of thousands to a few million. 
Because of this, they need much less computing power and can run on ordinary hardware. They are 
easier to fine tune for domain specific tasks and can be deployed within an organisation’s own 
infrastructure. Their smaller size provides cost efficiency, faster experimentation, and better control over 
data and security.

In summary, LLMs offer broad capability but demand substantial resources, while SLMs offer practical, 
efficient solutions for focused tasks with lower computational requirements.



Popular SLM Models

DistilBERT: A smaller version of Google’s BERT. Used for: text classification and question answering.

TinyBERT: Even smaller than DistilBERT. Used for: sentiment analysis, question answering, and text 
summarisation.

MiniLM (Microsoft): Designed for lightweight information retrieval tasks.

GPT-NeoX-20B Lite: A lighter variant of the GPT-NeoX family.

TinyGPT: Extremely small, designed for simple language tasks.

Phi-3.5-mini-instruct (Microsoft): A compact instruction-tuned model. Used for: summarisation, question 
answering, dialog and chatbots, text generation, text classification, and code-related queries.



LLMOps
LLMOps refers to the set of practices used to manage Large Language Models throughout their lifecycle 
in production. It focuses on how an organisation selects a model, tests it, improves it, deploys it, and 
monitors it, just like DevOps does for software systems. The goal is to ensure that LLM-based applications 
run reliably, stay accurate, and can be improved over time.

A real life example is an enterprise customer support chatbot built on a large language model. The 
organisation first selects a suitable foundational model. The team designs prompts to guide the chatbot’s 
behaviour and checks whether the answers match company guidelines. If gaps appear, the model may be 
fine tuned using past support conversations. Once the chatbot meets the quality expectations, it is 
deployed gradually using methods such as A/B testing or canary rollout, so only a small group of 
employees interacts with the updated version at first. After deployment, its responses are monitored to 
ensure accuracy and detect drift. If issues arise, the prompts or the fine tuned model are updated, and the 
cycle continues.

This closed loop of selection, refinement, controlled deployment, and monitoring illustrates how LLMOps 
supports the stable use of language models in real applications.



Development to Production Workflow

The workflow begins by selecting a foundational model. Once the model is chosen, prompt engineering 
is used to shape how the model behaves. The results are evaluated to check if the responses meet the 
required quality.

If there is room for improvement, the next step is to decide whether a team and labelled data are 
available. If both are available, the model can be fine tuned to match the organisation’s domain needs. 
If not, the process loops back to adjust prompts and evaluate again.

Once the output quality is acceptable, the model is deployed to production. At this stage, deployment 
strategies such as A/B testing, canary releases, and blue-green deployments are used to safely roll out 
updates. These methods help test changes on a smaller group of users before making them available 
system-wide.

This workflow ensures that LLM-based systems deliver reliable value while allowing continuous 
improvement.


