API-driven Cloud Native Solutions
(S1-25_CCZG506)

Assignment I

Table of Content

Group DetailS: ..o naan 1
Contribution Table...........o e ———————— 5
I = 1 = T ST o Y=Y 1o = 7
1.1 Business Understanding 7
DAtaSEL SOUICE......c.coiririiriiiiiiiiic e 7

1.2 Data Ingestion from Public Dataset (Ka@gle)..........coceeerreniereirininicereinineceieeeecicsensenenene 7
DAtaSEL SOUICE......ouivcteiiiiitcitcitct bbb s 8
Download PrOCEAUTE..........ccciiiiiiiiciii s 8
UPLOQA TO S3... et 9
Create S3 Bucket fOr INGESTION......c.ccviicueiriiiciciricceceeceete e sesseaeaes 9
UPLOAA £0 S3 (FAW/).ttt ettt snasacs 10

1.3 DAta PrEPrOCESSITNIE. ...covvviiieieieieieieieieeeeteeee ettt ettt ees 10
KEY ODJECTIVES. ...ttt ettt ettt sneaeae 10
Overview of AWS Glue and PySpParkK.......c.ccvenicinnieniciniceeeecseeeseeessesesessesensenes 1
Why We Chose AWS Glue with PySpark.........cccinniiiiicceccceenee 1
Data Preprocessing With AWS GIUE.........cccvceivniciininiiicccccetcceseeceseseeeaes 11
Creating GIUE JOD I AWS......ooiiiiceieiritciereeieieesieei ettt ssseasae 12
Python ETL SCript fOr GIUE JOD.....c.cccviiiiiiiricccinricccericieieeteeicseseseeesesetseeesesenes 14
GItHUD SOUTCE......coviiiiiiiii s 15
Developing the Python ETL SCIPL....c.ccocccieiciieeciseieieeseeneeeseessesesessesessnsenns 15
JOD INItIAlISATION.cevvuiiiecieiciciicicie et 15
Reading the Raw Data from S3........cccceiiienniicnccciecceeeese e 16

Data Cleaning and Transformation..........c.cooccennireeernnniccennceeeneceresseeeeenes 16
Writing the Cleaned Data to the Processed Zone...........ccoeveeuvnnececreinninecncrninnnen. 17
Splitting the Data for Model Training and TeSting.........c.ccocvveeevennencereinneneeierrinenenes 17
Writing Training and Testing Data to S3........cccccvenicnienieeeeciseeiesseeenseaens 17
Finalising and Committing the JOD........cococeiiiccininiiccceccceeecns 18

IAM Role and Policy Setup for AWS Glue ETL.......cccccevvviiernnniccnnnicceenicecienennes 18
Create a Custom IAM Role for AWS GIUE.........ccccovrviierrnineccrcniccereceienns 18

Create the JAM ROI€.........iiiiii s 18

Attach Custom IAM POLICIES......cceueuieireiieiiciricieceieie et seseseaes 19

Running the ETL JOb in AWS GIUE........ccovieiieiriiirccirciriceccecreie e sseseseeaens 21
Enhancing the PreproCessing SteP.......c.ccviiiiininiieinininieeceeieieeesessesessesesensenes 24
Column Type Conversion and LOZZING.........ccccvriierernninieiernininicereinieesesensssesesenes 25

Missing Value IMPULATION.......c.cvuieueueiriniicreiririecceeeceteseeesese et sesene 25

SUMMATY STATISTICS. c.eeuiuiiiiiiiiiit et senenen 26

Sales Column NOrmaliSation..........ccveiiciniininiciiiccee e 26
Improved Traceability via CloudWatch LOgS........cccceurreeeveirnneeicieirineeiceeineeeceennn. 27

1.4 Exploratory Data Analysis (EDA) 27
Establishing the EDA ENVIFONMENT.........ccccceiiiieiiniiiicreiicceeiieeiesessieesesesessesesesenns 27
Code WalKERIOUGH........ccciiiiiiciciiiccccc bbb 28
Initialising the Spark and Glue CONEEXTS.......c.cvveeerririniiereiniceieeeereseeesesenes 28
Loading the Processed DataSet..........cocceririecierrininieeieinneeceisineeeseseineseesesesessesesenes 29
Verifying Schema and Sample RECOTAS........cccerieieirininecieirrrecieeneeceiereeeseneenes 29
Interpretation and OULCOME........c.cvvvirirririeecieeeeee e esens 30
Understanding Dataset StrUCTUTE........c.ccoviieeuerriniiiiericcierireeeetsesesese e sesesene 30
Inspecting the Schema and Data TYPES.......ccccveeiririniceieininiiceeecreteeiesesesseseees 30
SAMPLE RECOTAS....cveiiiiieieieiicieie ettt sttt sttt sttt ettt 31
Exploratory Data INSIGItS.......cccceiiiviiiiiciiccicee s 32
Descriptive StatistiCs fOr Sales.......ou e 32
Temporal SAles TTENAS.ceeurrrieeieirrireeierrceee ettt 33
Store-Level Performance ANalySiS.......c.ccovceeenecenincecnieinieieeeeeiessesessesesesesessesens 34
[tem-Level Performance ANalySiS.........coenniiceninceecceeeeceseseseesesenens 35
MiSSING Value ChECK........vciieiiiiiicicitccte et 37
Correlation Analysis and Output PersiStence...........ccoocvveeeviernievinienniesineensienne 37
Numerical Correlation ANALYSIS........covcceerirereereininireeeerree et seesesesenes 37
INFEIENICE. ...t 38
Feature Engineering and Model Training Preparation............cceccceveuvvniccreieniccnennnnn. 39
ODJECTIVE. ...ttt et bbbttt es 39
Establishing the Feature Engineering Environment............cccccoevvveceienneccrennnneenes 39
Code Walkthrough and Output Verification...........ccovvveeerrinnenecrernnneccrenneecnenns 40
AWS GIUE JOD SETUP.....cetvreirimirerriiereieteieinieicieieisieseiese s sese st sesesessasesesens 40
Reading the Processed Dataset.........ccceveurineieinecinicreinieieieeeneeseeeessesesessenenne 40
Creating Temporal FEAtUTES..........ccccevviiieininnicieiniiceeeeeieeiee e 40

Lag and Rolling Average FEAtUTes.........cccvvicereininiecreinieceeieecciesenseceesenenes 41
Handling Missing Values and Persisting Outputs.........c.cccceevveveceerrnnenccrennnenenes 41

1.5 DataOps Automation and Scheduling.............cccuuuiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeee e 42
L@ o] 1= Tox 1177 TSR 42
AWS GlUE WOTKFIOW. ... 42
Creating Glue WOIKFIOW.........ooueiiiiieeie e 43
Setting Up Triggers for Sequential EXeCution...........ccccccovvvviiiiiiii, 44
Testing and Verifying the Workflow.............c.coccoiiiiiiii s 53

Monitoring the WOrkflOW Progress.........c.uueiiiiiiie e 53

Validating Logs in CloudWatcCh...............o s 55

Preprocessing JOD........o e 55
Exploratory Data Analysis (EDA) JOD........coouiiiiiiiiiieieee e 55
Feature ENGINEering JOD............uiiiiiiiiii e 56
Verification SUMMAY.........ooiii e 57

1.6 Automating AWS Glue Workflows with EventBridge.................ccoeo oo, 57
Create the EventBridge RUIE..............oooo e, 58
EventBridge Rule Configuration.............ccuuiiiiiiiiiie e 59
Select Target for Scheduled EXECULION..............ooiiiiiiiii e 60
Configure Schedule Settings and PermisSions..............cooiiiiiiiiieeiiiniiieceee e 62
Permissions: Create Custom IAM ROIE..........oooouiiiiiiiii e 63
Step 1: Define Trusted ENtity.......oooeeieiiiiii 63
Step 2: Attach Permissions POlICIES.uuuiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeee e 64
Step 3: Name and Save the ROIE...........uiiiiiiiiiiiii e 65
EventBridge Rule Verification...........c..uuiiiiiiiie e 65

2 Machine Learning PipeliNe.......o. . ciiiiiiiieicccccssss s s s s rsss s ss s s s s s s s s s sssss s s s e s e s s nmnsssssssssennnnns 67
2.1 ODJECTIVE. ...eviiiicicteiriciet ettt bbbttt beteaes 67
2.2 MOAE] PrEParation.....c.c.cueuririeueueieirinieieieietsieseiesetsesesesesessasesesesesessssssesesesesstssscsesessssssssesesssssssneses 67
GOAL.iiiiieieietee ettt e b etk b et et be et et bese et et benen 67
MOAE] SELECTION......cueuiiieieiiiirieiecirt ettt ettt et b e a s ebe e esssesesanessssesananses 67
Implementation in AWS Glue (SCTIPt MOAE).......ccvuvieererrinirecieiiiiicresiricceeseeceenenene 68
Code Walkthrough and Output VerifiCation..........cccovveeeeveurniniccrnnniecreinneccereseeeienes 68
Loading the Feature-Engineered Dataset..........cceoveeverrinineceeieinineceereineneeeseneeseenes 68
CloudWatch VerifiCation........cccvuveeueeeirinireeieiririececiesiseeicieeeseeseietetseeesese e sesenes 68

Data Preparation for Model Training........c.ccccvcevecurneeinicrnineenicniceeeseeseeeensesenn. 69
CloudWatCh VerifiCation.........ccceeueueieueieeeeeeieeeeeesesessssssssssssssssss s sssssssesssssens 69

2.3 MOAE] TTAINING....c.ceviiiiiieieieiieeieieirieccre ettt st sesssssasaes 69
CloudWatCh VerifiCation.........cceueueueueiiueieieieieicieieceeeeeee e 70

2.4 MOl EVAIUATION......c.cviiriieiieieiiecicieieireiciete ettt ettt sseneaene 70
CloudWatch VerifiCation........ccovveeeeueiririrecieieirireeiciesiseecieesteeseie st sessenene 71
Analysing RMSE ValUES........c.cooiiiiiiiiiiiiiiiciiniicciicceeiceesicesesesssssssenes 71

2.5 Model Stability and RMSE Analysis Across Multiple RUnS........cc.cccovveenecrnincerinecnnenee 71
RMSE Results from Five RUNS.......cccceeieieieieiciecicicciecciceecccieeeeeeeee e 71
Statistical SUMMATY......ccieiiririicciec ettt ase s 72
INEETPIELATION. ...eeteteceeict e e 72

LiN€ar REGIESSION.......cciiiiiiiiei et e e 72

RaNdom FOrest REGIESSON.........uuuiiiiiiiiiiii e 72
CONCIUSION. ...ttt ettt ettt sttt ettt 73

Persisting Model Artifacts........cocceeniccieininiicccce e 73

CloOUAWaAtC Vel fiCation. .. eeeeeeeeeeeeeeeeeeeete et et et e et e et eesteestesseesseesseesaseesseesssesssesssen 74

2.6 Performance TUNING........uuuiiiiiiiieiieeeeeeeee ettt e e e e e e e e 74
Modified Parameters and Impact on efficiency..........ccccooeviiiiiiiieii e 74

2.7 Prediction Generation and CloudWatch Verification.............ccccccoiiiiiiiii 76
Code Walkthrough and Output Verification............cccoooiiiiiiiiiiiii e 76
Generating Predictions on Test Data...........cccoooviiiiii, 76
CloudWatch VerifiCation.............ooiuiiiiiiiie e 78

2.8 MLOps: Automating the Machine Learning Stage..........ccccccceeeiiiiiiiiieiie e 78
Adding MLOps Trigger and Attaching the Glue Job............cccoois 79
Updated End-to-End Workflow with MLOps Integration............ccocccvviieiiiiiiiiiiiinennn. 79
Running the final workflow with ML Job..............ooooiiiii s 80
Workflow Completion.........c.oooiiiiiii e 81

2.9 Integrating Final Workflow with EventBridge...........ccccoiiiii 81

B Y o Yo o=] 82
Retrieving Pipeline Status via AWS APIs 83
Retrieve Key Application Details USINg AWS APIS.......ccovveverivniniceerninnecereininecerensineenes 83
SOUTCE COUC.....viiuiieiririiicieieritei ettt b ettt bbbttt s et be st seaeae 83
Code Walkthrough and Output VerifiCation..........c.cooveveeverrineceeennnecrcenneeceesseseenenes 84
Lambda InitialiSAtioN........ccoveeueueirinireeeieiririceeetrccesree ettt 84

LOZ VETIfICAtION.vieiieiciccctcectc ettt 84
Automatic Discovery of AWS GIUE JODS.......ccceuriiciininiiicnincceeccereeeeaenes 85

LOZ VETIfICALION....c.cuiiiiiiicieiririccecteiiecctce ettt nens 85
Retrieving Four Key Application Details...........cccoccvieinicivicnniciciciciceens 85

LOZ VETTfICAION......cviriieicieiririeciet ettt 86
Verification of Execution Performance..........cocoeevneecrennenccieinneneceeseneeenenesnenene 86
Appendix 87
Full Source Code in GItUD ... 87

How to check CloudWatch Logs in AWS?.......c.oiieininiceininccieisiicesessiseseesesessssessaesesesens 87

1 Data Pipeline

1.1 Business Understanding

This section should briefly explain the real-world context and why the problem matters. In
the highly competitive retail sector, forecasting product demand accurately is critical for
ensuring optimal inventory levels, minimising wastage, and maximising customer
satisfaction. Retailers often struggle with stockouts or overstocking due to demand
fluctuations, seasonality, and consumer trends.

This project focuses on building a demand forecasting solution using historical sales data
for 50 items across 10 stores over a 5-year period (from 2013 to 2018). The dataset is
sourced from Kaggle’s Store Item Demand Forecasting Challenge, which closely mimics
real-world retail demand patterns.

The objective is to design and implement a robust data pipeline that:
e Ingests the raw historical sales data
e C(Cleans, transforms, and prepares it for analysis
e Enables Exploratory Data Analysis (EDA)
e Supports Machine Learning models to forecast future item demand

This pipeline will demonstrate how cloud-native serverless tools like AWS Glue, S3,
Lambda, and CloudWatch can be used to build scalable, automated demand forecasting
solutions aligned with modern retail business needs.

Overall Architecture

Building on the business problem described above, the overall system architecture has
been designed to integrate key AWS services into a unified, automated, and serverless data
processing and machine learning workflow. This architecture enables seamless data
ingestion, transformation, model training, and continuous monitoring within a cloud-native
environment.

The process begins with Amazon S3, which serves as the central data lake for storing raw
sales data obtained from Kaggle. The data is then processed by AWS Glue, where cleaning,

transformation, and preprocessing are performed using PySpark scripts. These steps
prepare the data for analysis and model training.

Following preprocessing, the system performs Exploratory Data Analysis (EDA) and
proceeds to Machine Learning model training within AWS Glue. Algorithms such as
Linear Regression and Random Forest Regressor are trained on the prepared dataset to
forecast product demand, and the resulting predictions are stored back in S3 for validation
and evaluation.

Automation is achieved using AWS EventBridge, which schedules the pipeline to execute
every two minutes, ensuring real-time updates and retraining as new data becomes
available. Amazon CloudWatch monitors all stages of the workflow, capturing logs,
performance metrics, and execution details for observability and fault tracking.

Finally, an AWS Lambda function exposes the system’s status and outputs through
API-based access, allowing users to query application details such as job status, start time,
duration, and model performance metrics. This integrated design demonstrates how
cloud-native tools can be orchestrated to build a scalable, reliable, and fully automated
demand forecasting solution suitable for real-world retail environments.

/)

Public Dataset Amazon S3 AWS Glue AWS Lambda

Training — Traning

! !
pald />
v o @
Processed Data CloudWatch Predictions API Access

Fig 1: Overall Architecture of the ML Pipeline

Dataset Source

Kaggle - Store Item Demand Forecasting Challenge

1.2 Data Ingestion from Public Dataset (Kaggle)

For this project, we selected the publicly available dataset from the Kaggle Store Item
Demand Forecasting Challenge. This dataset provides historical daily sales figures for 50
unique items sold across 10 different stores over a 5-year period (2013-2018), simulating
realistic demand fluctuations in the retail industry.

Dataset Source

Platform: Kaggle

Challenge: Store Item Demand Forecasting

Objective: Predict 3 months of item-level daily sales at different store locations.
Size: 18.7 MB (3 CSV files)

Download Procedure

Once you land on the Kaggle competition page:
1. Click the Data tab in the top navigation bar (see screenshot below).
2. On the right-hand side, locate the Data Explorer section.
3. Click Download All to get all relevant CSV files:
o train.csv (training data)
o test.csv (test data)
4. If prompted, accept the competition rules and terms to enable the download.

https://www.kaggle.com/competitions/demand-forecasting-kernels-only?utm_source=chatgpt.com
https://www.kaggle.com/competitions/demand-forecasting-kernels-only?utm_source=chatgpt.com

® KAGGLE - PLAYGROUND CODE COMPETITION - 7 YEARS AGO

Store Item Demand Forecasting Challenge

Predict 3 months of item sales at different stores

Overview Data Code Models Discussion Leaderboard Rules Team Submissions

Dataset Description

The objective of this competition is to predict 3 months of item-level sales data at different store locations.

File descriptions

= train.csv - Training data
+ test.csv - Test data (Note: the Public/Private split is time based)

» sample_submission.csv - a sample submission file in the correct format
Data fields

» date - Date of the sale data. There are no holiday effects or store closures.
« store - Store ID
* item - ltem ID

» sales - Number of items sold at a particular store on a particular date.

Fig 2: Data tab location on Kaggle challenge page

Files
3 files

Size
18.7 MB

Type
csv

License
Subject to Competition Rules

Data Explorer
18.7 MB

@D sample_submission.csv
@D test.csv
@D train.csv

Summary
» O 3files

» D 10 columns

4 Download All

Fig 2: Data Explorer section showing files available for download

Upload to S3

Next step in the process is to upload the dataset in S3, our chosen data lake. To be able to
upload the dataset in S3, let’s first create the S3 bucket and the directory structure.

Create S3 Bucket for Ingestion

Let’s create a dedicated S3 bucket to store raw and processed data. Create the following
bucket in S3:

Bucket Name: scdf-project-data

And then create the following folder structure inside the bucket:

s3://scdf-project-data/
L— raw/

L— processed/
L— training/

|— train.csv/

L— test.csv/

This structure reflects a standard data lake zone architecture:
e raw/ — for unprocessed source files
e processed/ — for cleaned Parquet outputs
e training/ — for split CSVs (train.csv, test.csv) used in ML workflows

scdf-project-data i
Objects Properties Permissions Metrics Management Access Points

Objects (10) @ 3 copy s3 URI IO copy URL & Dpownload open [2 Delete 7 upload

Objects are the fundamental entities stored In Amazon S3. You ¢an use Amazon S3 Inventory [7 to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly grant them permissions. Learn
more [2

| Q Find objects by prefix | B show versions 1 @
()] Name A | Type ¥ | Last modified v | size v | Storage class v |
[[eda_gfolders - October 19, 2025, 17:35:06 0B Standard
— . (UTC+01:00)
O O edes Folder
(O [features/ Folder
—_ October 21, 2025, 07:18:59
O [models_$folders - crober 21, 2025, 08 standard
- e (UTC+01:00)
[0 [models Folder
[0 [3 predictions/ Folder
(0 [processed/ Folder
O O rew Folder
[[training_$folders - October 18, 2025, 11:09:03 08 Standard
—— (UTC+01:00)
0 [training/ Folder
Fig 3: S3 bucket and folder structure

You need to upload only the two relevant files — train.csv and test.csv — to the raw/ folder
using the AWS Console. This setup allows downstream services like AWS Glue to access the
data directly for transformation and analysis.

1.3 Data Preprocessing

Now that the data has been ingested and made available in the raw/ folder in S3, we need
to develop a serverless data preprocessing pipeline using AWS Glue, written in PySpark.

Key Objectives
The preprocessing pipeline aims to:
e Remove nulls or corrupted rows (if any)

e Ensure correct data types

e Normalise numerical values for ML training

e Split data into train and test subsets

—» Data Cleaning

k.

Transformation

— Data Splitting

Fig 4: Conceptual model of Data Preprocessing

Overview of AWS Glue and PySpark

AWS Glue is a fully managed serverless data integration service provided by Amazon Web
Services. It is designed for building, running, and orchestrating extract-transform-load
(ETL) pipelines at scale. Glue simplifies the data engineering workflow by automatically
provisioning resources, managing dependencies, and scaling execution environments
without the need to manage infrastructure. It supports both visual (no-code) and
code-based job authoring, and it integrates seamlessly with other AWS services like S3,
Athena, Lambda, and CloudWatch. Glue also includes a metadata catalog to track and query
datasets across the data lake.

PySpark, the Python API for Apache Spark, provides a distributed computing engine for
processing large-scale data efficiently. It allows for fast, parallelised ETL operations across
a cluster of virtual nodes. With PySpark, developers can express complex transformations
and analytics using familiar Python syntax, while benefiting from Spark’s underlying
performance and scalability. It supports SQL queries, machine learning pipelines, and
streaming data — all of which are useful in building modern, cloud-native data workflows.

Why We Chose AWS Glue with PySpark

This project requires an automated, cloud-native pipeline to handle ingestion, cleaning,
transformation, and train-test splitting on a moderately sized dataset (91,000+ rows). AWS

Glue was chosen because it provides a serverless, scalable ETL engine that requires no
infrastructure setup, making it ideal for periodic batch jobs. It also offers native support for
reading and writing from S3, integrating with IAM, and logging via CloudWatch — all
essential for a secure and observable data pipeline.

PySpark was selected as the execution engine within Glue due to its performance and
flexibility. It allows us to perform type casting, missing value handling, Min-Max scaling,
and dataset partitioning using concise, readable Python code. The ability to leverage
Spark's .randomSplit() and MLIib transformers (like MinMaxScaler) made it ideal for
preprocessing tasks in a demand forecasting context, with the added benefit of being easily
scalable for larger datasets in future deployments.

Data Preprocessing with AWS Glue

Once the dataset has been ingested into S3, the next logical step is to prepare the data for
analysis and machine learning. This phase is called data preprocessing — and it typically
includes:

e Cleaning the data (e.g. handling missing values)

e Ensuring correct data types

e Scaling or normalising numerical features

e Structuring the dataset for training and testing (splitting)

Our goal here is to build a repeatable, serverless, and cloud-native preprocessing pipeline
that reads from the S3 raw/ folder, performs these transformations, and outputs cleaned,
structured data to S3 processed/ and training/.

For our purposes we have chosen AWS Glue. We chose AWS Glue because of the following
reasons:

e Itis serverless — no infrastructure to manage

e It supports PySpark, allowing efficient, distributed processing using familiar Python
syntax

e It natively integrates with S3, CloudWatch, and IAM

e It'sideal for ETL jobs that run periodically or in response to ingestion events

This makes Glue perfect for automating preprocessing pipelines in a scalable and
cost-effective way.

Creating Glue Job in AWS

The next step is to create a Glue ETL job in AWS. For that go to Glue in AWS console.

B & ® ® Euope(ondon) ¥

(=)

AWS Glue

Getting started
ETL jobs
Visual ETL
Notebooks
Job run monitoring
Data Catalog tables
Data connections
Workflows (orchestration)
Zero-ETL Integrations New
» Data Catalog
» Data Integration and ETL
» Legacy pages

What's New [
Documentation [2
AWS Marketplace

@ Enable compact mode

@ Enable new navigation

v Welcome to AWS Glue

yo and user g your data, and building E

¥

Prepare your account for AWS Glue

Q

. Set up roles and users|

Resources and tutorials [2

Getting started with AWS Glue: DocumentationAWs Training

Glue in 5 Minutes Videos: Authoring, Genal, Monitoring, Orchestration

Using connectors and connections
AWS Glue Documentation home

Examples: AWS Glue blog postsAWS Glue on GitHub

What's new in Glue 2

AWS Glue adds write operations for SAP OData, Adobe Marketo Engage, Salesforce Oct 05, 2025
Marketing Cloud, and HubSpot connectors

Amazon EMR on EC2 Adds Apache Spark native FGAC and AWS Glue Data Catalog Views Aug 23,2025
support

AWS Glue now supports Microsoft Dynamics 365 as a data source Jul 24,2025

Catalog and search for datasets

\ Admins: Grant access to AWS Glue and set a default \. View your databases & tables and catalog data using
\) 1AM role. \) Crawlers

\. Go to the Data Catalog .

Move and transform data

o Use Zero-ETL integrations to replicate data in near real-
X;) D) time, or ETL jobs to transform data In visual, notebook,
o

or code interface.

Go to Zero-ETL integrations
Go to ETL jobs

Data integration and management
P\ Monitor & debug ETL jobs and track usage
)
@ Connect to your data stores
=
%9
) Orchestrate jobs to build data pipelines
O
=)

7\ Manage and protect data
o
/) ((createajob to evaluate data quality) ((create a job to detect sensitive data)

One the right hand pane, navigate to the ETL Jobs as shown in the figure below:

© awscie > sobs

AWS Glue

Getting started
ETLjobs
Visual ETL
Notebooks
Job run monitoring
Data Catalog tables
Data connections
Workflows (orchestration)
Zero-ETL integrations New
» Data Catalog
» Data Integration and ETL
» Legacy pages

What's New [2
Documentation [2

AWS Marketplace

@ Enable compact mode

@ Enable new navigation

There are three ways you can create an Glue ETL job:

AWS Glue Studio

Create job inro

Author in a visual interface focused on data flow.
(=) =

Notebook

» Example jobs i

Your jobs (1) o

(' Q Fiterjobs by property J

()| Jobname v | Type Created by

O scdf-eti-clean-split-job Glue ETL script

1. Visual ETL
2. Notebook
3. Script Editor

Author using an interactive code notebook.

Author code with a script editor.

(] Gewesen

Create example job

:: Actions ¥ Run job
1 @
Last modified v AWS Glue version v

18/10/2025, 10:01:06 5.0

We will use Script Editor. Click on the Script Editor icon on the right. It will ask to choose
Engine to use, select Spark and in Options Start Fresh. Both are thankfully default options.

Script

Engine

| spard

Options
© start fresh
() Upload script

1 Choose file

Limited to Python (*.py, *.py3) files only.

crste st

Then click the “Create script” button. This will open the script editor as shown in the

figure below:

Untitled job ¢

Script

Job details Data quality

Script o
N ivrort sys

N

From awsglue. transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

@params: [JOB NAME]
args = getResolvedOptions(sys.argv, ['JOB NAME'])

sc = sparkContext()

glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['J0B NAME'], args)
job.commit ()

Python Ln1,Col1 (@ Errors A warning:

Version Control

Name the script something which you can relate to this task in hand. In my case I named it:

scdf-etl-clean-split-job.

Python ETL Script for Glue Job

To implement this job, we wrote a PySpark-based ETL script that performs the following:

e Loads the train.csv dataset from the S3 raw/ folder

e Drops any rows with missing or null values

e Casts all relevant columns to appropriate data types (e.g. sales to int, date to date)
e Writes cleaned data to the processed/ folder in Parquet format
e Splits the data randomly into 80% training and 20% testing

e Writes both train and test splits as CSVs into the training/ folder

GitHub Source

The full script is hosted on GitHub and can be downloaded here:

) Download scdf-etl-clean-split-job.py

You can copy and paste the code into the Glue Studio Script Editor, or upload it as a . py
file into an S3 location and reference it from the job.

Developing the Python ETL Script

The Python script below implements a complete Extract-Transform-Load (ETL) pipeline
using AWS Glue and PySpark. It reads raw sales data from Amazon S3, cleans it, converts it
to a more efficient storage format, splits it into training and testing subsets, and writes the
results back to S3 — all while maintaining Glue’s job-tracking capabilities.

Job Initialisation

The script we are developing begins by importing the necessary libraries and setting up the
AWS Glue job environment. This includes SparkContext, GlueContext, and Job, which
collectively provide the execution context for distributed ETL operations.

import sys

from awsglue.transforms import *

from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext

from awsglue.job import Job

from pyspark.sql.functions import col

from datetime import datetime

The job parameters (like the job name) are retrieved from Glue’s command-line arguments,
and the Spark and Glue contexts are initialised.

https://github.com/yourusername/scdf-etl-clean-split-job/blob/main/scdf-etl-clean-split-job.py

args = getResolvedOptions(sys.argv, ['JOB_NAME'])
sc = SparkContext()

glueContext = GlueContext(sc)

spark = glueContext.spark session

job = Job(glueContext)

job.init(args['JOB_NAME'], args)

This setup ensures that the script runs within AWS Glue’s distributed Spark infrastructure
and is properly registered for monitoring and logging.

args = getResolvedOptions(sys.argv, ['JOB_NAME'])

The getResolvedOptions() function reads from sys.argv. When AWS Glue runs the job, it
automatically appends --JOB_NAME scdf-etl-clean-split-jobto sys.argv.

Reading the Raw Data from S3

Once the environment is ready, the script reads the input dataset from the raw zone of the
S3 bucket.
The path points to the uploaded Kaggle sales dataset (base_sales.csv).

input_path = "s3://scdf-project-data/raw/base_sales.csv"
df = spark.read.option("header”, "true").csv(input_path)

This step ingests the CSV file into a Spark DataFrame, allowing distributed operations
across the cluster. The header=true option ensures that column names from the file’s first
row are retained for ease of reference.

Data Cleaning and Transformation

Before analysis, basic cleaning is performed to remove missing or invalid entries.
Here, dropna() is used as a minimal preprocessing step.

df cleaned = df.dropna()

This ensures the dataset remains consistent and reliable for downstream tasks. Additional
cleaning steps like type casting or outlier removal could be added later as part of the
DataOps phase.

Writing the Cleaned Data to the Processed Zone

Cleaned data is then written to the processed/ folder in Parquet format, which offers
column-based compression and faster analytics performance.

processed_path = "s3://scdf-project-data/processed/"
df cleaned.write.mode("overwrite").parquet(processed path)

The processed zone forms a clean, structured data layer — a key component of a
production-ready data lake.

Splitting the Data for Model Training and Testing

Once the dataset is cleaned, the next step is to divide it into two parts — one for training
the machine learning model, and another for testing how well the model performs on
unseen data.

We use an 80:20 ratio, meaning 80% of the data goes into training and 20% is reserved for
testing. Splitting the data is a standard practice in machine learning to evaluate model
performance objectively. The model is trained on one portion (training set) and then tested
on data it hasn’t seen before (test set). This helps detect issues like overfitting — where a
model performs well on known data but poorly on new inputs — and ensures the solution
generalises well to real-world scenarios. Using a fixed split also ensures consistency across
experiments and makes comparisons fair and repeatable.

train_df, test df = df_cleaned.randomSplit([0.8, 0.2], seed=42)

Here, the randomSplit() function does exactly what it says — it randomly divides the
dataset. The seed=42 ensures that this split is reproducible every time the job runs. This is
important because consistency across pipeline runs helps avoid surprises and ensures
fairness when evaluating model performance.

Writing Training and Testing Data to S3

The resulting datasets are stored separately under the training/ directory in S3. Each
subset is saved as CSV for easy integration with ML frameworks such as SageMaker or
scikit-learn.

output_prefix = "s3://scdf-project-data/training/"
train_df.write.mode("overwrite").option("header", "true").csv(output prefix

+ "train.csv")
test_df.write.mode("overwrite").option("header”, "true").csv(output_prefix
+ "test.csv")

This ensures modularity — analytical and ML pipelines can directly consume data from
clearly defined S3 paths.

Finalising and Committing the Job

Finally, the Glue job is committed to mark successful completion.
This step is important for job tracking and triggering dependent workflows within AWS
Glue.

job.commit()

IAM Role and Policy Setup for AWS Glue ETL

To enable our Glue job to securely interact with AWS services like Amazon S3 and AWS
Glue itself, we first created a dedicated IAM role. This role is assumed by AWS Glue at
runtime and must include all necessary permissions for reading /writing data, accessing
scripts, and running jobs successfully.

Create a Custom IAM Role for AWS Glue

Before running any Glue job, you need to assign it a role with the correct trust relationship
and access policies. Here's how we created our role:

Create the IAM Role

1. Navigate to the IAM Console:
https: //console.aws.amazon.com/iam

2. Click “Roles” — “Create role”
3. Choose Trusted Entity:
o Select “AWS service”
o Use case: Choose “Glue”

4. Click “Next” to skip permissions for now (we'll attach custom ones shortly)

5. Name your role something descriptive: scdf-ingest-simulator-role

6. Click “Create role”. This role will allow the Glue service to assume it during job
execution.

Attach Custom IAM Policies

Once the role is created, we attached two inline policies:

Policy 1: AllowS3IngestOps

Purpose

This policy allows the Glue job to:
e Read raw input files from raw/
e Write cleaned and split data to processed/ and training/
e List the S3 bucket

e Handle special SfolderS marker objects that Glue sometimes writes automatically

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject”,
"s3:ListBucket"
1,
"Resource": [
"arn:aws:s3:::scdf-project-data”,
"arn:aws:s3:::scdf-project-data/raw/*",
"arn:aws:s3:::scdf-project-data/processed/*",
"arn:aws:s3:::scdf-project-data/training/*",
"arn:aws:s3:::scdf-project-data/processed $folders$",
"arn:aws:s3:::scdf-project-data/training $folder$"

Policy 2: AllowGlueAssetsAccess
Purpose
This policy allows AWS Glue to access its own internal assets bucket, such as:

e Script files
e Job metadata
e Dependencies stored in AWS-managed S3 locations

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:ListBucket"
]J
"Resource": [
"arn:aws:s3:::aws-glue-assets-402691950139-eu-west-2",
"arn:aws:s3:::aws-glue-assets-402691950139-eu-west-2/*"
]
}
]
}

Policy 3: AllowCloudWatchLogsForGlue

If you would like to generate CloudWatch logs after the Glue job executes you need to
attach the following CloudWatch log permissions to your IAM role:

{
"Version": "2012-10-17",

"Statement": [
{
"Effect": "Allow",
"Action": [
"logs:CreatelLogGroup",

"logs:CreatelLogStream",
"logs:PutLogEvents"”

15

"Resource": [
"arn:aws:logs:eu-west-2:402691950139:10g-group:/aws-glue/jobs/*"
]
}
]
}

How to Attach the Policies
For each policy:
1. Go toIAM — Roles
2. Click your role: scdf-ingest-simulator-role
3. Scroll to Permissions — Add inline policy
4. Click “JSON” tab, paste the policy content
5. Click “Review policy”, give it a name (e.g., AllowS3IngestOps)
6. Click Create policy

Repeat for the second and third policy.

Running the ETL Job in AWS Glue

This section will walk you through the following steps:

1. Open Glue Studio and navigate to Jobs

B 8 ® @& curopelondon v T

(O]

= AWsGlue > Jobs

AWS Glue Studio e

Create job o

Author in a visual interface focused on data flow. Author cade with a script editor.
(=) oumm

Author using an interactive code notebook.
@

» Example jobs i Create example job

Your jobs (1) i @ Actions ¥ Run job
| Q Fitter jobs by property | 1
Job name v | Type Created by Last modified v | AWS Glue version v
scdf-etl-clean-split-job Glue ETL Script 18/10/2025, 10:01:06 5.0

2. Selecting scdf-etl-clean-split-job

8 @ ® cuopetoncon v

scdf-etl-clean-split-job Last modified on 18/10/2025, 10:01:06 Run

Script Job details Runs Data quality Schedules Version Control

Script inro

N inrort sys # Provides access to system-specific parameters and command-line arguments aa
2 from awsglue.transforms import * Contains AwS Glue transform classes used for ETL operations (e.g., mapping, resolving choice)
3 from awsglue.utils import getResolvedoptions Parses and retrieves job parameters (like JOB NAME) passed to the Glue job
4 from pyspark.context import SparkContext Entry point for Spark; manages the connection to the Spark execution cluster
5 from awsglue.context import GlueContext Glue wrapper around SparkContext providing AWS Glue-specific features
6 from awsglue.job import Job Used to define, initialise, and commit AWS Glue jobs
7 from pyspark.sql.functions import col Provides DataFrame column functions used in transformations and filters
8 from datetime import datetime # Enables handling of date and time (useful for timestamps, logging, or file naming)
9
10
11 # AWS Glue Job Setup
12 #
13
14 # Retrieve the job name passed as a command-line argument from AWS Glue
15 args = getResolvedOptions(sys.argv, ['JOB NAME'])
16
17 # Initialise a SparkContext — the entry point for Spark execution
18 sc = SparkContext()
19
20 # Create a GlueContext, which extends SparkContext with AWS Glue-specific functionality
21 glueContext = GlueContext(sc)
22
23 # Get the SparkSession from GlueContext to use standard PySpark APIs
24 spark = glueContext.spark session
25
26 # Define and initialise the Glue job for tracking and logging purposes
27 job = Job(glueContext)
. 28 job.init(args['JOB_NAME'], args) f:'

Python Ln1,Col1 (@ Errorss0 | /A waming &

3. Clicking Run. You should see a message like the below on the screen:

Successfully started job

Successfully started job scdf-etl-clean-split-job. Navigate to Run details for more details.

B L | @ @ ewopeltondon v

@ Ssuccessfully started job X
Successfully started job scdf-etl-clean-split-job. Navigate to Run detalls for more detalls.
scdf-etl-clean-sp Last modified on 18/10/2025, 1001:06 Run
Script Job details Runs Data quality Schedules Version Control
Script o
N inrort sys # Provides access to system-specific parameters and command-line arguments -
2 from awsglue.transforms import * # Contains AWS Glue transform classes used for ETL operations (e.g., mapping, resolving choice)
3 from awsglue.utils import getResolvedoptions # Parses and retrieves job parameters (like JOB NAME) passed to the Glue job
4 from pyspark.context import SparkContext # Entry point for Spark; manages the connection to the Spark execution cluster
5 from awsglue.context import GlueContext # Glue wrapper around SparkContext providing AWS Glue-specific features
6 from awsglue.job import Job # Used to define, initialise, and commit AWS Glue jobs
7 from pyspark.sql.functions import col # Provides DataFrame column functions used in transformations and filters
8 from datetime import datetime # Enables handling of date and time (useful for timestamps, logging, or file naming)
9
10
11
12
13
14 # Retrieve the job name passed as a command-line argument from AWS Glue
15 args = getResolvedOptions(sys.argv, ['JOB NAME'])
16
17 # Initialise a SparkContext — the entry point for Spark execution
18 sc = SparkContext()
19
20 # Create a GlueContext, which extends SparkContext with AWS Glue-specific functionality
21 glueContext = GlueContext (sc)
22
23 # Get the SparkSession from GlueContext to use standard PySpark APIs
24 spark = glueContext.spark session ad
»

Python Ln1,Col1

4. Monitoring job status (succeeded /failed). Go to Runs Tab for the status of the job
started:

scdf-etl-clean-split-job Last modified on 18/10/2025, 100106 Run
Run details Input arguments (9) Logs Run insights Metrics | Troubleshooting analysis - preview | Spark Ul EE
Job name Start time (Local) Glue version Last medified on (Local)

scdf-etl-clean-split-job 10/18/2025 14:01:04 5.0 10/18/2025 14:03:04

id End time (Local) Worker type Log group name
Jr_5a441fece269aa031f18a6e072a03575d5491006c4258a2d84e35b10/18/2025 14:03:04 GIX /aws-glue/jobs

074efddeds 0

Run status Start-up time Max capacity Number of workers

@ succeeded 33 seconds. 10 DPUs 10

Retry attempt number Execution time Execution class Timeout

Initial run 1 minute 27 seconds Standard 480 minutes

Trigger name Security configuration Cloudwatch logs Usage profile

- « outputlogs [2 -
« Errorlogs[2

Job run queuing

False

5. Viewing logs in CloudWatch. Go to the CloudWatch service in AWS and navigate to
Log Groups and under log groups you should be able to see an entry created for the
Glue job, named something like the below:

[aws-glue/jobs/error

https://eu-west-2.console.aws.amazon.com/cloudwatch/home?region=eu-west-2#logsV2:log-groups/log-group/$252Faws-glue$252Fjobs$252Ferror

B 8 ® @ Europellondon v

e CloudWatch > Log groups [c]
CloudWatch <
Log groups (9) © view i ogs i) (sreraies) (R
Favorites and recents » By default, we only load up to 10000 log groups.
| Q Fitter tog groups or try pattern search J Exact match ! @
Dashboards
» Alarms Ao @o O (J] Loggroup v | Logclass v | Anomalyd.. ¥ | Dataprotection ¥ Sensitive data... ¥ Retention v | Metricfi
¥ Logs (J /aws-glue/jobs/error Standard Configure - - Never expire
Log groups @] Standard Configure
Log Anomalies .
O Standard Configure
Live Tail
Logs Insights [0 /aws/lambda/OpenskylngestLambda Standard Configure
Contributor Insights (0 /aws/lambda/OpenskyingestLambda2 Standard Configure - - Never expire
» Metrics New [J /aws/lambda/ProcessOpenSkyKinesisData Standard Configure - - Never expire
» Application Signals new [J /aws/lambda/ReadFrombDynamoDB Standard Configure - - Never expire
(APM) B
(0 /aws/lambda/TestLambdaCallingAPI Standard Configure S - Never expire
» Network Monitoring - -
. (0 /aws/lambda/scdf-ingest-simulator Standard Configure - - Never expire
» Insights
« »
Settings

Telemetry config
Getting Started

What's new

Check the logs and see if there is something interesting.
6. Verifying output in:
o s3://scdf-project-data/processed/
o s3://scdf-project-data/training /train.csv/

o s3://scdf-project-data/training /test.csv/

Enhancing the Preprocessing Step

In the first version of our ETL script, the preprocessing logic was intentionally kept
lightweight to get the pipeline up and running. The approach did not explicitly handle
missing values or data types, simply loading the raw data as-is. This simplistic strategy
presents several key shortcomings:

e It can cause unnecessary data issues — without explicit type casting, columns
remain as strings, which can cause errors or unexpected behavior in downstream
transformations or machine learning models.

e It lacks observability — without logging schema details, missing value counts, or
statistical summaries, there’s no visibility into the data’s state before transformation,
making debugging and validation difficult.

e It risks silent data quality problems — missing values were implicitly accepted
without checks or imputation, which can degrade model performance or cause
runtime failures.

To make preprocessing more robust, traceable, and machine-learning-ready, we enhanced
the script in several key ways.

Column Type Conversion and Logging

We began by explicitly casting our columns to their correct data types. For example, the
original dataset stores all values as strings. So we added:

df = (
df.withColumn("store", col("store").cast("int"))
.withColumn("item", col("item").cast("int"))
.withColumn("sales", col("sales").cast("float"))
.withColumn("date", col("date").cast("date"))

Then, to confirm that each field is now correctly typed, we added a simple loop to log
column names and their types:

print("---- Column Data Types ----")
for name, dtype in df.dtypes:
print(f"{name}: {dtype}")

This small addition provides immediate visibility into how the data is structured before
transformations—a crucial step in any pipeline.

Missing Value Imputation

Rather than dropping all rows with nulls, we impute missing values in the sales column
using the column’s mean:

mean_sales =
df.select(mean("sales").alias("mean_sales")).collect()[@]["mean_sales"]
df cleaned = df.fillna({"sales": mean_sales})

This preserves more of the original dataset while still addressing incomplete records. In
business datasets—especially in retail—it's common to encounter small gaps, so filling
rather than discarding aligns better with real-world use.

We also log the number of missing values per column before imputation:

missing info = {colname: df.filter(col(colname).isNull()).count() for

colname in df.columns}
print("---- Missing Value Check ----")
print(missing_info)

Summary Statistics

To make the pipeline more transparent and exploratory, we added basic descriptive
statistics using PySpark’s built-in .describe() method:

df.describe(["sales", "store", "item"]).show()

This offers a quick view of mean, min, max, standard deviation, and counts—helping detect
outliers, unusual scale differences, or missing distributions early on.

Sales Column Normalisation

Machine learning models often perform better when numeric features are scaled within a
standard range, so we introduced Min-Max normalization on the sales column. This
required assembling the column into a vector (a Spark ML requirement), applying
MinMaxScaler, then cleaning up the result:

assembler = VectorAssembler(inputCols=["sales"], outputCol="sales_vector")
scaler = MinMaxScaler(inputCol="sales_vector", outputCol="sales scaled")
pipeline = Pipeline(stages=[assembler, scaler])

scaler_model = pipeline.fit(df_cleaned)

df scaled = scaler_model.transform(df_cleaned)

Convert vector to scalar float
vector _to_float = udf(lambda vec: float(vec[@]), FloatType())
df final = (
df scaled.withColumn("sales_scaled_value",
vector_to_float(col("sales_scaled")))
.drop("sales_vector", "sales_scaled")

After this step, the sales_scaled_value column holds values between 0 and 1, ensuring this
feature won't dominate model training due to scale.

Improved Traceability via CloudWatch Logs

Throughout these enhancements, we added print() statements after each transformation to
log the DataFrame’s internal state and track the success of key stages. These messages
appear in CloudWatch Logs under your Glue job’s output stream. This brings a DevOps
perspective to the pipeline—making every transformation observable, debuggable, and
reproducible in production.

Together, these changes transform our basic preprocessing script into a robust,
cloud-native ETL pipeline step that’s ready for real-world machine learning workflows.

1.4 Exploratory Data Analysis (EDA)

After cleaning and normalising our dataset, the next logical step in the pipeline is to
perform Exploratory Data Analysis (EDA). This stage is essential to understand the
structure, relationships, and variability within the data — which directly informs feature
selection, model choice, and performance expectations.

EDA allows us to extract early insights, identify potential anomalies, and uncover
correlations between variables before committing to model training. In this assignment, we
used AWS Glue and PySpark to perform EDA in a distributed, scalable, and cloud-native
way.

Summary
Statistics
Amazon S3
l U
[Processed Data]—P a
AWS Glue
(Script Mode)

Data Visualization
Missing Values
Analysis
Pattern Identification

Figure 4: Conceptual model EDA

Establishing the EDA Environment

To maintain consistency across stages, the exploratory analysis will be conducted using
AWS Glue Studio Notebook mode. This environment will provide the scalability of a Spark
cluster with the convenience of a managed Jupyter-like interface, allowing queries and
transformations to run directly on the processed dataset stored in Amazon S3.

A new Glue job will be created, referencing the same IAM role used in the preprocessing
phase, ensuring access to both S3 and CloudWatch. The preprocessed dataset — stored in
Parquet format under the processed directory — will then be loaded as a Spark DataFrame
for analysis.

from awsglue.context import GlueContext

from pyspark.context import SparkContext

from pyspark.sql.functions import col, year, month, dayofweek, avg, sum as
_sum, to_date

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session

Load processed data

df = spark.read.parquet("s3://scdf-project-data/processed/")
df.printSchema()

df.show(5)

This confirms that the preprocessing stage successfully outputs a schema-consistent,
machine-learning-ready dataset.

Code Walkthrough

The goal of this code block is to initialise a distributed Spark environment within AWS Glue
and load the preprocessed dataset for exploratory analysis. Each line contributes to setting
up a scalable, cloud-native data exploration environment.

Initialising the Spark and Glue Contexts

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark _session

Here, the execution environment is being instantiated:

o SparkContext() creates a new Spark session across the managed Glue cluster. This
session controls all resource allocation and parallel task execution.

e GlueContext(sc) wraps the Spark context and enables Glue’s additional features,
including Data Catalog integration, logging, and job orchestration.

o glueContext.spark_session provides the standard SparkSession interface, allowing
you to run familiar Spark DataFrame operations such as .read(), .select(), .groupBy(),
and .describe().

This setup effectively transforms Glue into a fully operational Spark analytics engine, ready
to process large-scale datasets directly from S3.

Loading the Processed Dataset

df = spark.read.parquet("s3://scdf-project-data/processed/")

This line retrieves the cleaned and normalised dataset produced in the previous ETL phase.
Key points:

e .read.parquet() instructs Spark to load Parquet files — a columnar storage format
optimised for analytical workloads and query performance.

e The data resides in the processed/ directory of the same S3 bucket used previously,
ensuring seamless pipeline continuity.

e Because the preprocessing script explicitly casted column types (store, item, sales,
and date), Spark automatically recognises their correct data types at this stage.

This operation verifies data persistence and schema consistency between pipeline stages.

Verifying Schema and Sample Records

df.printSchema()
df.show(5)

These two commands are critical for validation:

e printSchema() displays the structure of the DataFrame, listing each column name
along with its inferred type (e.g. store: int, item: int, sales: float, date: date). This
ensures that all type casting performed during preprocessing was successful.

e show(5) prints the first five rows of data, allowing a quick visual inspection to
confirm the dataset has been correctly loaded and that no unexpected
transformations occurred during the handoff from ETL to EDA.

Together, these commands act as an integrity checkpoint — confirming that your ETL
output is schema-consistent, readable, and ready for machine learning-oriented
exploration.

Interpretation and Outcome

This initial setup completes the environment verification step of the EDA stage. By
successfully reading from the processed Parquet dataset and inspecting its schema, we
validate that:

e The preprocessing stage correctly produced a machine learning ready dataset.
e The Glue cluster can access the required S3 resources using the same IAM role.

e The Spark environment is active and configured for further analytical operations,
such as computing summary statistics, time-series aggregations, and correlation
analysis.

Understanding Dataset Structure

Once the processed dataset was successfully loaded into the AWS Glue environment, the
first analytical step in Exploratory Data Analysis (EDA) was to examine its structure and
statistical characteristics. This step provides a foundational understanding of how the
dataset is organised — including data types, column relationships, and basic numerical
summaries — ensuring that it aligns with the expectations defined during preprocessing.

Inspecting the Schema and Data Types

To confirm that all preprocessing transformations were correctly applied, the following
commands were executed:

df.printSchema()
df.show(5)

The schema output retrieved from the CloudWatch logs verified that each column was
properly typed and ready for analysis:

root
| -- date: date (nullable = true)
| -- store: integer (nullable = true)
|-- item: integer (nullable = true)
| -- sales: float (nullable = true)
| -- sales_scaled value: float (nullable = true)

This structure confirms that the preprocessing stage successfully applied the intended type
casting and scaling transformations:

e date — identifies the transaction date in standard date format.
e store and item — integer identifiers for the retail outlet and product respectively.
e sales — the original daily sales value (floating-point).

e sales_scaled_value — the normalised version of the sales figure (scaled between 0
and 1 using Min-Max scaling).

The inclusion of both sales and sales_scaled_value columns ensures that downstream
analyses can use either the raw or scaled metric, depending on the modelling or
visualisation requirements.

Sample Records
A preview of the dataset was generated using:

df.show(5)

The first five records, retrieved directly from the CloudWatch logs, confirm that the dataset
was successfully read from the processed Parquet files stored in Amazon S3:

R +----- Rt e +
| date|store|item|sales|sales_scaled_value]|
i F----- R il T T +
2013-01-01	1] 1] 13.0]	0.056277055		
2013-01-02	1	1	11.0	0.04761905
2013-01-03	1	1] 14.0	0.060606062	
2013-01-04	1] 1] 13.0]	0.056277055		
2013-01-05	1	1	1e0.0	0.043290045
R +----- s e +

only showing top 5 rows

This verified that:
e All columns loaded correctly with the intended data types.

e The dataset contained valid numeric and date values without null or malformed
entries.

e The preprocessed data was successfully preserved in Parquet format and is now
machine learning ready.

Exploratory Data Insights

With the dataset successfully validated and loaded, the next step in the Exploratory Data
Analysis (EDA) process was to derive statistical summaries and aggregated views that
describe sales behaviour across time, stores, and items. Using AWS Glue and PySpark, this
analysis was executed in a distributed, scalable manner directly on the processed data
stored in Amazon S3.

Descriptive Statistics for Sales

The first analytical step involved computing overall descriptive statistics for the sales
column to understand its central tendency and spread:

df.describe(["sales"]).show()

The output retrieved from CloudWatch was as follows:

| count]| 913000 |
| mean|52.250286966046005 |
| stddev|28.801143603517264]
| min | 0.0|
|

This summary provides a quick overview of the dataset’s numeric distribution:

e The dataset contains 913,000 records, confirming completeness and high data
volume.

e The mean sales value is approximately 52.25, with a standard deviation of about
28.80, indicating moderate variability in store-item performance.

e The minimum and maximum sales values (0.0 to 231.0) reflect a realistic range of
retail transactions across different store-item combinations.

This descriptive layer establishes the baseline for detecting anomalies, assessing variability,
and informing scaling decisions in future modelling phases.

Temporal Sales Trends

To examine monthly sales patterns over time, the year() and month() functions were
applied to the date column, followed by a group-wise aggregation of total monthly sales:

from pyspark.sql.functions import year, month, sum as _sum

df = df.withColumn("year", year(col("date"))).withColumn("month",
month(col("date")))

monthly sales = df.groupBy("year",
"month").agg(_sum("sales").alias("total sales")).orderBy("year", "month")
monthly sales.show(10)

The following output segment illustrates total monthly sales for 2013:

LRy R Fommmmmme e +
|year|month|total sales|
LR P Fommmm e +
| 2013 | 1| 454904.0|
| 2013 2| 459417.0|
| 2013 3] 617382.0|
2013 4	682274.0	
2013 5	763242.0]	
2013 6	795597.0	
2013 7	855922.0	
2013 8	766761.0	
2013 9	689907.0]	
2013	10	656587.0]
LR EETEE LR R R e +

only showing top 10 rows

1e6 Monthly Total Sales Trend

124

1.1

1.0+

0.9 4

0.8

Total Sales

0.7 4

0.6

0.5

Month

From this, we can infer:
e Steady growth in total sales from January through July.
e A seasonal plateau during mid-year, suggesting cyclical consumer behaviour.

e The presence of temporal variability, which supports the eventual inclusion of
time-based features (month, quarter, season) during feature engineering.

This monthly aggregation validates that the pipeline can efficiently summarise time-series
data at scale.

Store-Level Performance Analysis

Next, store-level performance was assessed by calculating the average sales per store:

store_avg =
df.groupBy("store").agg(avg("sales").alias("avg_sales")).orderBy(col("avg_s
ales").desc())

store_avg.show(10)

The output revealed clear differences in performance across retail locations:

+----- Fom e e +
| store| avg_sales|
o= Fmm e +

2| 67.03316538882804 |
8| 64.14204819277109 |
3]59.530602409638554 |
10| 58.70928806133625 |
9]55.049025191675796 |
4| 54.90294633077766 |
1|47.268378970427165 |
5| 39.77016429353779|
6]39.733515881708655 |
7|36.363734939759034 |
+----- L L LT +

Average Sales by Store

70

8

Average Sales
8
i

2 4 6 8 10
Store ID

This ranking highlights that Store 2 consistently achieved the highest average sales, while
Stores 6 and 7 recorded lower averages. Such store-level variation can be used to build
location-specific demand forecasting models or to identify underperforming outlets
requiring operational adjustments.

Item-Level Performance Analysis

Similarly, item-level aggregation was performed to identify the top-selling products across
all stores:

item_sales =
df.groupBy("item").agg(_sum("sales").alias("total_sales")).orderBy(col("tot
al sales").desc())

item_sales.show(10)

The output was as follows:

s ST +
|item|total_sales|

15	1607442.0
28	1604713.0]
13	1539621.0]
18	1538876.0
25	1473334.0]
45	1471467.0]
38	1470330.0]
22	1469971.0
36	1406548.0]
8	1405108.0]

only showing top 10 rows

1e6 Top 10 Items by Total Sales

1.6

1.4 1

1.2 4

1.0 4

0.8

Total Sales

0.6

0.4

0.2 4

0.0 -
15 28 13 18 25 45 38 22 36 8

Item ID

The results show that items 15, 28, and 13 were the highest contributors to total sales
during the analysed period. This insight will be particularly valuable during feature
engineering, where item-level popularity or historical demand strength can be used to
enrich predictive features for machine learning.

Missing Value Check

A missing value check was also performed to confirm the completeness of the dataset:

missing _info = {c: df.filter(col(c).isNull()).count() for c in df.columns}
print(missing info)

The output retrieved from CloudWatch logs was:

Missing Values Summary:
{'date': @, 'store': @, 'item': O, 'sales': O, 'sales scaled value': 0,
'year': 0, 'month': @, 'dayofweek': 0}

This confirms that all eight columns are 100 % complete, with no missing or null records.
The earlier data-cleaning and imputation steps in the preprocessing stage successfully
ensured dataset integrity and consistency. Having a null-free dataset is essential for
distributed computation within Spark, as it prevents skewed aggregations and invalid type
operations during model training.

Correlation Analysis and Output Persistence

After verifying dataset completeness, a quantitative correlation analysis was performed to
understand how key variables interact and influence sales outcomes. This step helps
determine which attributes carry predictive potential and which may be redundant or
weakly associated with the target variable.

Numerical Correlation Analysis

To compute Pearson correlation coefficients between major numeric columns, the
following PySpark commands were executed:

Correlation between key numerical variables
corr_store_item = df.stat.corr("store", "item")
corr_store_sales = df.stat.corr("store", "sales")

corr_item_sales = df.stat.corr("item", "sales")

print("Correlation between store and item:", corr_store item)
print("Correlation between store and sales:", corr_store sales)
print("Correlation between item and sales:", corr_item_sales)

The CloudWatch log output was as follows:

Correlation between store and item: 7.063209925969646e-16
Correlation between store and sales: -0.008170361306182861
Correlation between item and sales: -0.05599807493660445

These values provide meaningful insights:

e Store vs Item (= 0) — negligible correlation, confirming that store identifiers and
item identifiers are independent categorical features.

e Store vs Sales (= -0.008) — near-zero correlation, implying that sales variation is not
strongly tied to store ID alone. It likely depends more on other temporal or
product-specific factors.

e Item vs Sales (= -0.056) — weak negative correlation, suggesting minor variation in
item-level demand but no strong linear dependency.

Such results reinforce the idea that sales behaviour is multi-factorial — influenced by time,
item, and location combinations rather than any single attribute in isolation. This finding
directly motivates the feature-engineering phase, where interaction features and lagged
sales trends will be incorporated to capture these complex relationships.

Inference

By completing correlation computation and persisting the analytical outputs to Amazon S3,
the EDA phase achieves full reproducibility and observability.
The dataset is now:

e Fully validated with zero missing values.
e Statistically summarised across temporal, store, and item dimensions.

e Correlated and contextualised, providing actionable insight into feature
relationships.

e Persisted in cloud storage, making it readily accessible for model training.

The next step in this pipeline will be Feature Engineering and Model Training Preparation -
where temporal, categorical, and interaction-based features will be generated to feed a
predictive demand forecasting model.

Feature Engineering and Model Training Preparation

After completing the Exploratory Data Analysis (EDA) stage, the next logical step in our
pipeline is Feature Engineering — a critical phase that bridges data exploration and model
training.

In this stage, we transform the cleaned and analysed dataset into a
machine-learning-ready form by creating new, meaningful features that capture
seasonality, store-item interactions, and temporal patterns.

Objective
The objective of this phase is to:

e Generate additional temporal and statistical features that can help the model
recognise trends and seasonality.

e Encode categorical features (store, item) and maintain numeric consistency for ML
algorithms.

e Ensure the enriched dataset is complete, schema-consistent, and stored in a
structured S3 location ready for model ingestion.

Establishing the Feature Engineering Environment

To maintain continuity and reproducibility across all pipeline stages, we perform this phase
using AWS Glue in script mode — the same configuration used for preprocessing and
exploratory data analysis. Running all jobs within a consistent Glue environment ensures
identical cluster setup, IAM role usage, and S3 access permissions throughout the
workflow.

A new Glue job named scdf-feature-engineering-job is created under the existing IAM role.
To allow the job to persist the engineered feature outputs, the IAM policy is extended with
the following additional resource path:

"arn:aws:s3:::scdf-project-data/features/*"

This policy update ensures that the Glue job can securely store transformed feature
datasets in the features/ directory, enabling a seamless transition into the next phase —
model training and evaluation.

Code Walkthrough and Output Verification

The feature engineering stage extends the preprocessing and EDA pipeline, enriching the
dataset with temporal and lag-based predictors critical for time-series forecasting. The
implementation, contained in glue_script_feature_engineering.py, follows a well-defined
five-step flow consistent with earlier Glue jobs. The script is available via the public github
repository created for this project.

AWS Glue Job Setup

The script begins with the standard setup:

args = getResolvedOptions(sys.argv, ['JOB_NAME'])
sc = SparkContext()

glueContext = GlueContext(sc)

spark = glueContext.spark _session

job = Job(glueContext)

job.init(args['JOB_NAME'], args)

This initialises the Spark environment and links it to AWS Glue’s job lifecycle management.

Reading the Processed Dataset

input_path = "s3://scdf-project-data/processed/"
df = spark.read.parquet(input_path)
print("Processed dataset loaded successfully.")

The CloudWatch logs confirm successful data load:
2025-10-20T06:26:09.718Z Processed dataset loaded successfully.

This validates seamless continuity between the preprocessing and feature engineering
stages.

Creating Temporal Features

Using PySpark’s date functions:

df = df.withColumn("year", year(col("date"))) \
.withColumn("month", month(col("date"))) \
.withColumn("day of week", dayofweek(col("date")))

print("Temporal features (year, month, day_of week) created.")

Corresponding CloudWatch entry:
2025-10-20T06:26:09.853Z Temporal features (year, month, day_of_week) created.

These features introduce seasonality awareness into the dataset, which later models will
exploit for demand forecasting.

Lag and Rolling Average Features

The script constructs short-term trend indicators using Spark’s window functions:

window_spec = Window.partitionBy("store", "item").orderBy("date")
df = df.withColumn("lag 1", lag("sales", 1).over(window_spec))

df = df.withColumn("lag_ 7", lag("sales", 7).over(window_spec))

df = df.withColumn("rolling avg 7",

avg("sales").over(window spec.rowsBetween(-6, 9)))

print("Lag and rolling average features created.")

CloudWatch Log confirmation:

2025-10-20T06:26:10.077Z Lag and rolling average features created.
e lag_1: previous day’s sales
e lag_ 7:previous week’s sales
e rolling_avg_7: seven-day moving average of sales

Together, these enhance the dataset’s ability to represent momentum and temporal
dependencies.

Handling Missing Values and Persisting Outputs

Missing lag values are imputed, and the final data is written back:

df = df.na.fill(®@, subset=["lag 1", "lag 7", "rolling avg 7"])

print("Missing values in lag features imputed with zeros.")
output_path = "s3://scdf-project-data/features/"
df.write.mode("overwrite").parquet(output_path)
print("Feature-engineered dataset written to:", output path)

We have confirmed this from CloudWatch logs:

2025-10-20T06:26:10.151Z Missing values in lag features imputed with
zeros.

2025-10-20T06:26:25.522Z Feature-engineered dataset written to:
s3://scdf-project-data/features/

2025-10-20T06:26:25.528Z Feature engineering job completed successfully
at: 2025-10-20 06:26:25.527828

These entries collectively verify full job success, schema stability, and data persistence.

1.5 DataOps Automation and Scheduling

Objective

After successfully implementing the ingestion, preprocessing, feature engineering, and
exploratory data analysis (EDA) stages, the next objective was to automate their execution
and establish continuous monitoring. Automation ensures that data transformation and
analytical jobs are executed in a consistent and repeatable manner, while monitoring
provides visibility into system health and performance through real-time metrics.
Together, these two components complete the DataOps layer of the solution — enabling
reliability, transparency, and operational consistency across the data pipeline.

AWS Glue Workflow

The first stage of automation involves creating an AWS Glue Workflow to orchestrate the
end-to-end data pipeline. This workflow will execute all the Glue jobs — covering ETL
(cleaning and splitting), EDA, and feature engineering — in a well-defined sequential
order.

Once created, the workflow will be manually triggered to verify that each job runs
successfully and that all outputs are written to their respective S3 destinations. Job
execution status and logs will be validated through Amazon CloudWatch to ensure proper
sequencing and error-free completion.

In the second stage, an Amazon EventBridge rule will be configured to automate the
workflow execution at regular intervals (e.g., daily or hourly), ensuring continuous and
unattended data processing.

At this stage, the machine learning Glue job is intentionally excluded. It will be integrated
later during the end-to-end ML pipeline automation phase, where model training and
evaluation will be combined with the upstream data preparation workflow to form a
complete, production-ready pipeline.

Creating Glue Workflow

To create an AWS Workflow go to the AWS Glue Service and click on Workflow
(orchestration).

e AWS Glue > Workflows [c]
AWS Glue < @ some workflows successfully deleted
The following workflows are now deleted: "scdf-data-pipeline-workflow *, *scdf-data-pipeline”, “scdf-pipeline”, "scdf-data-pipeline-workflow"
Getting started
ETLjobs Workflows (0) ©) (actions v) (Addworkiiow
Visual ETL A workflow is an orchestration used to visualize and manage the relationship and execution of multiple triggers, jobs and crawlers.
Notebooks | Q Filter workflows | 1 fi]
Job run monitoring "
Name A | Lastrun v | Lastrun status v | Last modified v |
Data Catalog tables
Data connections No resources
Workflows (orchestration) No resources to display.

Zero-ETL integrations New

v

Data Catalog

v

Data Integration and ETL

v

Legacy pages

‘What's New 12
Documentation 12
AWS Marketplace

@ Enable compact mode

@ Enable new navigation

Click on the Add Workflow button located at the top right corner of the page. Fill in the
following details for the workflow:

B L4 0 @

Europe (London) ¥

e AWS Glue » Workflows

AWS Glue

Getting started
ETL jobs

‘Visual ETL

Notebooks

Job run monitoring
Data Catalog tables
Data connections
Werkflows (orchestration)
Zero-ETL integrations New

Data Catalog

v v

Data Integration and ETL
Legacy pages

v

What's New 12
Documentation (2

AWS Marketplace

@ Enable compact mode

@ Enable new navigation

> Add workflow

<

Add a new ETL workflow

Add a workflow In order to orchestrate ETL jobs, triggers, and crawlers.

Workflow details

Workflow name

| scdf-data-pipeline-workflow

Names may only contain letters (A-Z), numbers (0-3), hyphens (-), or underscores ().

Description - optional

AWS Glue workflow orchestration for data pipeline automation

250 characters max.

» Properties - optional

» Tags - optional

Cancel Create workflow

Click on the Create Workflow button at the bottom right corner. A new workflow named
scdf-data-pipeline-workflow will be created for you:

AWS Glue
Gatting started
ETL jobs

visual ETL

Notebooks

hata connections
Workflows [orchestration)

Zero-ETL integrations Mew

Data Catalog
Data Integration and ETL
Legacy pages

y v w

What's New 12
Documantation 12

AWS Markatplace

@0 Enabile compact mode

@0 Enable new navigation

ly created. See detall by icking here.

Workflows (1)
A workflow i an orchestration used to visualize and manage the relationship and execution of multiple triggers, jobs and crawlers.
Q Filter wo
MNama - Last run
scd —pilpell

v Add workflow
1 @
¥ | Last modified v

October 24, 2025 at 15:17:26

Once created, the workflow appears in our orchestration list. However, a workflow is only
as effective as its triggers — and that’s what we configured next.

Setting Up Triggers for Sequential Execution

Click on the workflow to go to its detail page:

B & @ @® | Fcurope(london) v

e AWS Glue > > scdf-data-pipeli kflow [c]
AWS Glue ¢ @ Workflow "scdf-data-pipeline-workflow" was successfully created. See details by clicking here.
T Last updated (UTC

Getting started cdf-data-pipeline-workflow ccane 21 sone s raana. (©) Crun veriow) (Coetete)
ETL jobs

Visual ETL Workflow details Advanced properties

Notebooks —

Job run monitoring Name Description Max concurrency Last run status
Data Catalog tables scdf-data-pipeline-workflow AWS Glue workflow orchestration for data
Data connections pipeline automation
Workflows (orchestration)

Last run Last modified Blueprint name Blueprint run Id
Zero-ETL integrations New - October 24, 2025 at 15:17:26 - -

» Data Catalog
» Data Integration and ETL
» Legacy pages Graph History Tags
What's New 2 Legend: ® start @ Trigger [sob [crawler ¥ incomplete € Eror Deleting Remove

Documentation 12

AWS Marketplace
The workflow is empty

@ Enable compact mode Add trigger

@ Enable new navigation

Once created, the workflow appears in our orchestration list. However, a workflow is only
as effective as its triggers — and that’s what we set up next.age:

Add trigger X

Clone existing Add new

Name

| Enter a trigger name...

Choose a trigger to clone

| Q. Filter triggers 1 2 >
Name F Y Trigger type Parameters I
Trigger-preproces... CONDITIONAL Trigger to actuate the EDA glue job.
Trigger2_EDA_pre... CONDITIONAL
Trigger3_feature_... CONDITIOMNAL
Trigger_01 OMN_DEMAND
trigger-clean-split OM_DEMAND
trigger-clean-spli... OMN_DEMAND A trigger for actuating the split Glue job
trigger-clean-spli... OMN_DEMAND The first trigger to actuate the ETL pipeline.
trigger-clean-split2 OMN_DEMAND trigger-clean-split
trigger-clean-spli... OMN_DEMAND trigger-clean-split
trigger-eda CONDITIOMAL Start EDA after data cleaning and split completes.

Cancel Add

A pop-up screen will appear, giving you the option to choose an existing trigger or create a
new one. For our purposes, we'll create a new trigger. Click on Add New and fill in the
following details for the trigger:

Trigger Name: Trigger 01 split and clean
Description: Trigger for actuating the split Glue job
Trigger Type: On demand

Add trigger X
Clone existing Add new

Name

| Trigger_01_split_and_clean

Description (optional)

Trigger for actuating the split Glue]obl

Trigger type

() Schedule

() Event

© ondemand

() EventBridge event

Cancel Add

Click on the Add button at the bottom, and you should see that the trigger has been
created.

scdf-data-pipeline-workflow

Workflow details Advanced properties

Name Description
scdf-data-pipeline-workflow AWS Glue workflow orchestration for data pipeline
automation

Last run Last modified
- October 24, 2025 at 15:17:26

Graph History Tags

Legend: ® start ® Trigger [Job [Crawler ¥ incomplete @ Error

lI i

Trigger
t_anc

01_spli
i_clean

Deleting

Last updated (UTC) @ -
October 24, 2025 at 15:18:18 (Run workflow) (_ Dalete)

Max concurrency Last run status

Blueprint name Blueprint run Id

Remove Action ¥

Next, we need to attach a Glue job to the trigger. This first trigger will initiate the first Glue
job in our pipeline, scdf-etl-clean-split-job. Click on Add Node and select

scdf-etl-clean-split-job from the list.

-
Add job(s) and crawler(s) to trigger X
Jobs Crawlers
| Q Filter jobs 1
2 MName & I Type Last modified v
] EDA Job ReTry Spark Mon Oct 20 2025 06:45:57 GMT+0100 (British Sum...
] EDA_ExportToCSV_Job Spark Sun Oct 19 2025 17:30:40 GMT+0100 (British Sum...
] EDA_Gluelob Spark Sun Oct 19 2025 17:23:31 GMT+0100 (British Sum...
[scdf-etl-clean-split-job Spark Sun Oct 19 2025 11:26:13 GMT+0100 (British Sum...]
] scdf-feature-engineering-job Spark Fri Oct 24 2025 11:25:17 GMT+0100 (British Summ...
] scdf-ml-training-job Spark Tue Oct 21 2025 06:44:04 GMT+0100 (British Sum...
Cancel -
. |

Click on Add to add the job.

Trigger 01 spli
t and clean

scdf-etl-clean-s
plit-job

Click on scdf-etl-clean-split-job, and it will expand, prompting you to attach the next

trigger in the pipeline.

Trigger_01_spli
t and clean

scdf-etl-clean-s
plit-job

Next, we need to create another trigger for the EDA Glue job. Click on Add Trigger, as

shown in the diagram.

Add trigger X

Add new

| trigger_02_EDA

Description (optional]-|

' Trigger for actuating the EDA Glue job

Trigger type

o Event

() EventBridge event

Trigger logic
© start after ANY watched event
() start after ALL watched event

Cancel -

Fill in the following details about the trigger:

Trigger Name: trigger 02 EDA

Description: Trigger for actuating the EDA Glue job
Trigger Type: Event

Trigger Logic: Start after ANY watched event

Click on Add to add the trigger.

r=—=—=-"
> 1 1
| Add 1
» » | node :
> : J|
Trigger_01_spli scdf-etl-clean-s wmigger 02 FQ | | | | | | |TTTMT
t and_clean plit-job A

Select EDA Job Retry (the name of the EDA Glue job):

Add job(s) and crawler(s) to trigger X
Jobs Crawlers
|_ Q Filter jobs 1
& | name A I Type Last modified A4 |
[EDA Job ReTry Spark Mon Oct 20 2025 06:45:57 GMT+0100 (British Sum...]
] EDA_ExportToCSV_Job Spark Sun Oct 19 2025 17:30:40 GMT+0100 (British Sum...
] EDA_Gluelob Spark Sun Oct 19 2025 17:23:31 GMT+0100 (British Sum...
] scdf-etl-clean-split-job Spark Sun Oct 19 2025 11:26:13 GMT+0100 (British Sum...
] scdf-feature-engineering-job Spark Fri Oct 24 2025 11:25:17 GMT+0100 (British Summ...
] scdf-ml-training-job Spark Tue Oct 21 2025 06:44:04 GMT+0100 (British Sum...
)

|

Click on Add to attach the job to the trigger:

.

Trigger_01_spli scdf-etl-clean-s
t_and_clean plit-job

L 3K)

tr

4
I\\

‘4, N
» Add S
trigger
« ngger

o) ’
N
'

igger_02_ED
A

EDA Job
ReTry

We have one more trigger to create for the feature engineering Glue job. Click on the EDA
Job Retry button, and it will expand, prompting you to add the next trigger:

Trigger_01_sp scdi-eil-clean-s trigger_02_ED EDA Job
t_and_clean plit-job A ReTry

Click on the Add trigger add one more trigger:

Add trigger X

Add new

Name

|_ trigger_03_Feature_Engineering |

Description (optional)

' Trigger for actuating the feature engineering Glue job

Trigger type

o Event

() EventBridge event

Trigger logic
© start after ANY watched event
() start after ALL watched event

4

Fill in the following details about the trigger:

Trigger Name: trigger 03 Feature_Engineering

Description: Trigger for actuating the feature engineering Glue
job

Trigger Type: Event

Trigger Logic: Start after ANY watched event

Click on the Add button to create the trigger.

Notice that the trigger is pointing to the job to be attached. Click on the Add Node button
and select scdf-feature-engineering from the list:

Add job(s) and crawler(s) to trigger X

Jobs Crawlersg

| Q. Filter jobs 1
-] MName 'y I Type Last modified v
] EDA Job ReTry Spark Mon Oct 20 2025 06:45:57 GMT+0100 (British Sum...
1l EDA_ExportToCSV_Job Spark Sun Oct 19 2025 17:30:40 GMT+0100 (British Sum...
C] EDA_Gluelob Spark Sun Oct 19 2025 17:23:31 GMT+0100 (British sum...
] scdf-etl-clean-split-job Spark Sun Oct 19 2025 11:26:13 GMT+0100 (British Sum...

[scdf-feature-engineering-job Spark Fri Oct 24 2025 11:25:17 GMT+0100 (British Summ...]
] scdf-ml-training-job Spark Tue Oct 21 2025 06:44:04 GMT+0100 (British Sum...

y

Click on Add button to add the job:

@ i E ’ H i E ’ i ’ E
Trigger 01 _spli 5| tl-Clean-s trigge EDA Joh scdf-feature-en
1_and_clean A ReTIy

er_ 02 ED frigger 03_Fea cdf-feature-e
wre_Enginee Jineering-jot

Now we have all the necessary triggers and their associated Glue jobs in the workflow. We
are ready to run the workflow to verify that it is functioning correctly.

Testing and Verifying the Workflow

Before letting automation take over, it was essential to test the workflow manually. From
the workflow dashboard, we clicked Run Workflow, watched it start, and monitored its
execution in real time.

N A Last updated (UTC
scdf-data-pipeline-workflow ocner 22 bupaated LTC) (@) (“run workflow) (oetete)
Workflow details Advanced properties
Name Description Max concurrenc, y Last run status
scdf-data-pipeline-workflow AWS Glue workflow orchestration for data pipeline
automation

Last run Last modified Blueprint name Blueprint run Id
- October 24, 2025 at 15:17:26 - -

Graph History Tags

Legend: ® start @ Trigger [Job [Crawler ¥ incomplete @ Error Deleting Remo: Action ¥

g ¢ B ¢ B

Once you click on Run Workflow, a notification will appear indicating that the workflow has
started:

Workflow successfully starting

The following workflow is now starting: “scdf-data-pipeline-workflow”

Monitoring the workflow progress

To monitor the progress of individual Glue jobs, go to the left-hand panel and click on Job
Run Monitoring:

AWS Glue <

b Monitering

Monitoring .

Getting startad Start dats range

7 Day v

Job runs summary

Tota

49 1

Data connections

workfiows (orc

Zorc-ETL Intagy

75%

12

:

» Data Catalog
» Data Integration and ETL
» Legacy pages Job runs (47) s (G Castions) (iow clowawateti togs 3)
Q Filter job runs by prop 1
What's New (& Job name v Runstatus ¥ Type ¥ Start time (Local) v End time (Local) v Runtime ¥ Capacity ¥ Worker type
l“:: M:_\E:::: EDA Job ReTry Glus ETL 10/24/2025 16:45:06 10 G
scdf-eti-clean-split-job Glue ETL 10/24/2025 16.46:20 10/24/2025 16:48:35 2 minutes 0 GIX
D Enable compact mode scdf-feature-enginesring-job Glue ETL 10/24/2025 12:05:00 10/24/2025 12:06:35 1 minute 10 61X
D Enable new navigation EDA lob ReTry Glue ETL 10/24/2028 12:02:42 10/24/2025 12:04:30 2 minutes 10 cx
scdf-stl-clean-split-job Glus ETL 10/24/2025 11:59:57 10/24/2025 12:02:12 2 minutes 10 G
scdf-feature-engineering-job Glue ETL 10/24/2025 11:35:43 10/24/2025 11:37:15 1 minute 0 GaX
EDA Job ReTry @ Succeeded Glue ETL 10/24/2025 11:33:30 10/24/2025 11:35:02 2 minutes 10 61X
sedf.etl-clean-split-job @ Succeeded Glue ETL 10/24/202% 11:30:47 10/24/2025 11:32:88 2 minutes 0 G
scof-feature-angineering-job @ succeaded Glus ETL 10/24/2025 11:26:18 10/24/2025 11:29:57 1 minute 0 GIX
scdf-feature-engineering-job @ Falled Glue ETL 10/24/2025 11:25:20 10/24/2025 11:26:49 1 minute 0 GaX

4

n dutalt
s 45 > @

¥ | DPUhours ¥

0.36

0.24

On the right-hand panel, you'll see each running or in-progress Glue job along with its
status. In our case, the scdf-etl-clean-split-job has completed, while the EDA Job Retry job
is currently running. Wait for all the jobs to finish. Once they do, you'll see the Completed

status displayed on the workflow detail page:

scdf-data-pipeline-workflow

Workflow details Advanced properties

Name Description

scdf-data-pipeline-workflow AWS Glue workflow orchestration for data pipeline
automation

Last run Last medified

October 24, 2025 at 15:52:51 October 24, 2025 at 15:17:26

Last updated
October 24, 2025 at

Last run status

@ completed

Max concurrency

Blueprint name Blueprint run Id

Also verify from the Job Run Monitoring page that all the jobs have succeeded:

Job runs (47) e
Job name v Run status ¥ Type W Start time (Local) L
sedf-feature-engineering-job @ succeaded Glue ETL 10/24/2025 16:51:19
EDA Job ReTry @ succeaded Glue ETL 10,/24/2025 16:49-06
scdf-etl-clean-split-job @ succeeded Glue ETL 10/24/2025 16:46:20
scdf-feature-engineering-job @ succeaded Glue ETL 10/24/2025 12:05:00
EDA Job ReTry @ succeaded Glue ETL 10/24/2025 12:02:42
sedf-etl-clean-split-job @ succeaded Glue ETL 10/24/2025 11:59:57
scdf-feature-engineering-job @ succeaded Glue ETL 10/24/2025 11:55:45
EDA Job ReTry @ succeeded Glue ETL 10/24/2025 11:33:30
sedf-etl-clean-split-job @ succeaded Glue ETL 10/24/2025 11:30:47
scdf-feature-engineering-job @ succeeded Glue ETL 10/24/2025 11:28:18

(Actions ¥) (View CloudWatch logs E)
1 2

End time (Local) L Run time ¥ Capacity ¥ Waorker type
10/24/2025 16:52:51 1 minute 10 GAx
10/24/2025 16:50:48 2 minutes 10 GX
10/24/2025 16:48:35 2 minutes 10 GIX
10/24/2025 12:06:35 1 minute 10 GIX
10/24/2025 12:04:30 2 minutes 10 GIX
10/24/2025 12:02:12 2 minutes 10 GIX
10/24/2025 11:57:15 1 minute 10 GIX
10/24/2025 11:35:12 2 minutes 10 GIX
10/24/2025 11:52:59 2 minutes 10 GIX
10/24/2025 11:29:57 1 minute 10 GIX

v

3

-
4 5 >
DPU hours v
024
027
036
024
027
036
023

0.26

Every job was completed successfully. This includes tasks from data cleaning and splitting
to feature engineering. These successes confirm that our workflow logic is sound.

Validating Logs in CloudWatch

Before moving on to orchestration, it was crucial to verify that each stage of the pipeline
executed successfully. The CloudWatch logs provided clear confirmation. All three Glue
jobs (preprocessing, EDA, and feature engineering) completed without errors. They
produced the expected outputs.

Preprocessing Job

The first Glue job started at 15:47:12, confirming the detected column schema and basic
statistics. The job ran through type detection, cleaning, and validation steps smoothly. The
logs show that all four columns were correctly identified as strings. A total of 913,000
records were processed without missing values.

2025-18-24T15:47:12.4197
---- Column Data Types ----
date: string

store: string

item: string

sales: string

25-10-24T15:47:36. 3467
': 8, 'store': 8, 'item': 8, 'sales': 8}
Row count after cleaning and normalisation: 913068
2025-10-24T15:47:53.4917
Processed data written to: s3://scdf-project-data/processed/
2025-18-24T15:48:16.7417

Train/Test split written to: s3://scdf-project-data/training/
Glue job completed successfully at: 2025-10-24 15:48:16.741721

These traces confirm that the raw dataset was cleaned, validated, and split successfully.
This process was done into training and test subsets. It sets the stage for exploratory
analysis.

Exploratory Data Analysis (EDA) Job

The second job began at 15:49:36, loading the preprocessed dataset from S3 and verifying
the schema conversion. The EDA phase produced multiple analytical summaries. These
included descriptive statistics, temporal breakdowns, and correlations. All of these analyses
ran without interruption.

P025-18-24T15:49:36.43
---- Starting Exploratory Data Analysis (EDA) ----
Loading preprocessed dataset from: s3://scdf-project-data/processed/

-18-24T15:49:49 . 2847

date: date (nullable = true)
store: integer (nullable = true)
item: integer (nullable = true)
sales: Tloat (nullable = true)

sales_scaled value: float (nullable = true)

-18-24T15:58:16.1517

2025-16-24T15:58:19. 6867

Missing Values Summary:

{'date’': ©

, 'store': @, 'item': @, : 6 sales scaled value': 08}

2025-18-24T15:50:21.598
Correlation between store and item:
Correlation between item and sales:

2025-16-24T15:508:28.876Z
EDA summary outputs written to: s3://scdf-project-data/eda/
EDA job completed successfully at: 2825-18-24 15:58:28.871836

From the summary, we can see that data integrity checks, aggregations, and correlation
analysis are all executed as expected. The outputs were written to S3, confirming a
successful and complete EDA run.

Feature Engineering Job

The third job started at 15:52:16, focusing on creating temporal and lag-based features for
model training. The log shows each transformation executed in sequence, including lag and
rolling average computation, missing-value imputation, and output export.

2025-18-24T15:52:16.9837Z

Processed dataset loaded successfully.
2025-168-24T15:52:17.12687

Temporal Teatures (year, month, day of week) created.
2025-10-24T15:52:17.3162

Lag and rolling average Teatures created.

2025-10-24T15:52:17.389Z

Missing values in lag features imputed with zeros.
2025-18-24T15:52:33.2687Z

Feature-engineered dataset writtenm to: s3://scdf-project-data/features/

Feature engineering job completed successfully at: 2025-18-24 15:52:

These logs confirm that the dataset was enriched with temporal and statistical features. It
was written successfully to S3. The process completed without errors.

Verification Summary

Each job concluded with the line “Running autoDebugger shutdown hook”, indicating
graceful shutdowns and no unhandled exceptions. These traces validate that all three Glue
jobs executed sequentially and correctly. The jobs are preprocessing, EDA, and feature
engineering. They produced clean, verified outputs at every stage. This end-to-end
validation provides a solid foundation for automating the entire workflow using AWS Glue
Workflows.

1.6 Automating AWS Glue Workflows with EventBridge

We are venturing further into the integration of data engineering and machine learning. It’s
crucial to explore ways to optimize our workflows. Our latest objective is to automate the
end-to-end AWS Glue Workflow (scdf-data-pipeline-workflow), ensuring it runs seamlessly
every 2 minutes. This aligns perfectly with our DataOps scheduling requirements,
facilitating a continuous and unattended execution.

To achieve this, we'll set up a time-based EventBridge rule. We will use the simple
expression rate(2 minutes). This setting will trigger our Glue Workflow at the designated
interval. We will also create a target execution role. This role will empower EventBridge
with the necessary permissions. It will initiate the workflow through
glue:StartWorkflowRun.

Additionally, we'll ensure that verification artifacts are in place. These can be screenshots
or logs. They demonstrate that the scheduling is active. They also confirm that runs are

occurring as expected. By automating our workflow in this manner, we enhance
operational efficiency. We also pave the way for more responsive demand forecasting
efforts. This approach leads to more agile processes. Let’s dive into the details!

Create the EventBridge Rule

Amazon EventBridge <

¥ Developer resources

Replays

¥ Pipes
Piges

* Scheduler
Schedisles
Schedule groups

* Integration

» Schema registry

Schemas

Open Amazon EventBridge — Rules — Create rule.
Name: scdf-workflow-every-2-mins

Define rule detail ...

Rule detail
Name

scalf-workflow-svantbriage-rue

Description - aptional

Triggers scdf-data-pipeline-workflow every 2 minutes
Event bus info

default

WD) Enable the rule on the selected event bus

Rule type | 1nr

Description: Triggers scdf-data-pipeline-workflow every 2 minutes
Event bus: default
Rule type: schedule

Rule with an event pattern © Schedule

EventBridge Scheduler - A new AWS scheduling capability! (=23
A new EventiBridge scheduding Furtionslity that provides ane-tem.
such & a Lambda function, — @

= snd recurring scheduling funtionality dependent of Event buses snd rules. Vou cai

i crante & sehadule to nvoks Largets

Continue in EventBridge Scheduler

Click on Continue in EventBridge Scheduler. In the next page you will see few options to
configure as shown in the picture:

Specify schedule detail

Schedule name and description
Schedule name

scdf-workflow-eventbridge-rule

Description - optional

Schedule group

default

Triggers scdf-data-pipeline-workflow every 2 minutes

In the picture shown, the settings for creating a new EventBridge rule are
displayed. You need to fill in the following fields:

1. Name: This is where the user will enter the name of the rule, which should
be scdf-workflow-every-2-mins.

2. Description: Here, the user will provide a brief explanation of the rule’s
purpOSG,SUCTIaSITiggers scdf-data-pipeline-workflow every 2

minutes.

3. Event bus: The user should select default for the event bus option.
4. Rule type: The rule type must be set to schedule.

Next you have to configure the schedule pattern.

Schedule pattern

Occurrence Info
‘ou can define a one-off or recurrent schedule

One-off schedule
Time zone
The time 2 sehedule
(UTC+01:00) Europe/London
Schedule type
Choose the schedule type that best meets your nes
Cron-based schedule

A schedule set using a cron expression

Monday of every month

Rate expression Info

n the schedule.

rate(| 2 minutes v i

Value Unit

Flexible time window

If you choose a flexible time window, scheduler invokes your schedule within the time wind

off v

that runs at a specific time, such as 8:00 am. PST

jow you specify. For example, if you choose 15 minutes, your schedule runs within 15 minute:

[© Recurring schedule]

© Rate-based schedule

on the first A schedule that runs at a regular rate, such as every 10 minutes.

5 after the schedule start time.

EventBridge Rule Configuration

In this step, the EventBridge Scheduler is configured to automatically trigger the
Glue workflow at a fixed interval. The setup defines a recurring schedule using
a rate-based expression, ensuring the data pipeline runs continuously without
manual intervention. The time zone is set to (UTC+01:00) Europe/London, and
the schedule interval is precisely defined to maintain regular execution.

Configuration details:

Occurrence: Recurring schedule
Time zone: (UTC+01:00) Europe/London

Schedule type: Rate-based schedule
Rate expression: rate(2 minutes)

Flexible time window: Off

This configuration ensures that the scdf-data-pipeline-workflow is automatically triggered
every two minutes. This provides continuous DataOps automation as required by the
assignment.

Select Target for Scheduled Execution

Click Next and it will take you to the target page:

) B Select target

@) seloct target Target detail

Target APl ko

Temnplated targets Al At
g

......... — N femazon £€S Armagon Lrerateidge
® < &
StartBuild StartPipelineE xecution Ruwn Task - PutEvents
quququququququququququququququ ne _\ AW'S Lambsds
Putitecord ol 1rrvake
P Amazon SHS — e @ e - WS Step Functior s
et Publish e SendMeszage StartPipelineExecution StartExecution

Cancel Py) | Mext

In this step, the EventBridge Scheduler target is configured to trigger the Glue workflow on
each scheduled run. The screenshot shows the “Select target” screen, where only
Templated targets are visible by default. Since AWS Glue is not listed in that view, we
switch to All APIs to manually select the Glue service.

Steps to configure:

In the Target detail section, change from Templated targets — All APIs.

Select target

Target detail

Target APl Info
Select an AP| that will be invoked as a target for your schedule.

) Templated targets

| [O Allapis

All AWS services

Q Find service

ES{I‘:E} Amazon A2l (3) Jj AP Gateway V1 77

Aws amplify (22) Amplify Backend (22)

I; E‘ AWS App Runner (27)

In the search bar, type Glue.

Select target

Target detail

Target APl | Info
Select an AP that will be invoked as a target for your schedule

API Gateway V2 (46)

Amplify Ul Builder (18)

iall AWS Account
a6t Management (7)

8l AWS App Mesh (23)

) Templated targets | [O alaris
All AWS services
[Q. clug *] 20f 371 1

AWS Glue (134)

AWS Glue DataBrew (28)

Type in StartWorkflowRun in the AWS Glue search box as shown in the below picture:

Select target

Target detail

Target APl Info
Select an API that will be invoked as a target for your schedule.

|) Templated targets | I O Allapis
All AWS services > AWS Glue
[Q StartWorkflowRur| X] 10f134 1

AWS Glue
StartWorkflowRun

Select StartWorkflowRun and it will show a JSON editor.

All AWS services AWS Glue

Q. startworkflowRun X 10f13a 1 >

Pl AWS Glue o]
? StartWorkflowRun

StartWorkflowRun

AWS Glue

Input
1v {

"Name": "scdf-data-pipeline .-a-.':ukfl::u{'
3}

In the JSOn editor change the name to the following:

{

"Name": "scdf-data-pipeline-workflow"

}

This is the name of our previously created Workflow. Now click Next which will take you to
the Settings page:

Configure Schedule Settings and Permissions

At this stage, the configuration focuses on defining how the EventBridge Scheduler behaves
after creation. This includes its retry logic. It also addresses encryption and permission
handling. These settings ensure the schedule runs continuously, securely, and with
resilience to transient failures. After selecting the target (AWS Glue — StartWorkflowRun),
the next screen is the Settings page, as shown below. Configure the key parameters as
follows:

e Schedule state: Set to Enable so the schedule starts running immediately.
e Action after schedule completion: Leave blank (default behaviour).
® Retry policy: Disable Retry to prevent repeated invocations and control costs.

e Dead-letter queue (DLQ): Set to None — no SQS queue needed for failed events.

Settings

Schedule state

Enable schedule

@ Enable

Action after schedule completion

Action after schedule completion | Info
f oose DELETE, EventBridge Scheduler will automatically delete the schedule after it has completed Its last invocation and has no future target Invocations planned.

v
Retry policy and dead-letter queue (DLQ)
Retry policy info
By default, EventBridge Sche: attempts to retry falled invocations for up to 24 hours. You can specify the maximum age of the event and the max umber of thmes to retry
D retry
Dead-letter queue (DLQ)
Orone

Select an Amazon 505 queue in my AWS account as a DLQ
Specify an Amazon $QS queue in other AWS accounts as a DLQ

Encryption: Leave it as it is.

Encryption it
By default, EventBridge Scheduler encrypts event metadata and message data that it stores under an AWS-owned key (encryption at rest). EventBridge Scheduler also encrypts data that passes between

EventBridge Scheduler and other services using Transport Layer Security (TLS) (encryption in transit)

Your data is encrypted by default with a key that AWS owns and manages for you. To choose a different key, customise your encryption settings.

Customise encryption settings (advanced)

Permissions i
Permissions

entBridge Schaduler requires permision to send avents to the target and, based on the preferences you select, intagrate with other AWS tervices, such a2 AWS KMS and Amazon 505

Execution role

[° Use existing role]

Select an existing role

v © Go to 1AM console [?
-

Permissions: Create Custom IAM Role

To enable the EventBridge Scheduler to securely trigger the AWS Glue workflow, it’s
essential to create a dedicated IAM role. This role will have the appropriate trust and
permission policies. These policies ensure that EventBridge can invoke the Glue service
without granting excessive access.

Step 1: Define Trusted Entity

When creating the IAM role, follow these guidelines:

e Select Trusted Entity Type: Choose aws service.
e Use Case: Select EventBridge Scheduler.

This setup automatically configures the trust policy, allowing the service
scheduler.amazonaws.com to assume the role.

As a result, the trust relationship JSON should resemble the following:

{
"Version": "2012-10-17",

"Statement": [

{
"Effect": "Allow",

"Principal™: {
"Service": "scheduler.amazonaws.com"

}s

"Action": "sts:AssumeRole"

}
]
}

By following these steps, you will ensure that your role is correctly set up,
facilitating secure interactions between EventBridge and AWS Glue.

Step 2: Attach Permissions Policies

Attach the following managed AWS policies to the role:

e AWSGlueServiceRole - grants permission to start and manage AWS Glue workflows
and jobs.

® CloudWatchLogsFullAccess - allows EventBridge-triggered runs to log their activity
and status to Amazon CloudWatch for observability.

Together, these policies ensure that:
e The EventBridge scheduler can call glue:StartWorkflowRun on the target workflow.

® Logs from triggered Glue jobs can be written to CloudWatch for operational
monitoring and troubleshooting.

Step 3: Name and Save the Role

® Role name: EventBridge-GlueWorkflowRole

e Description: Allows EventBridge Scheduler to trigger AWS Glue workflow
executions.

Once created, this role can be selected under Permissions — Use existing role in the
EventBridge Scheduler configuration screen.

scdf-workflow-eventbridge-rule Disable dit Delsta

Schedule detail

Schedule name Status Schedule start time Flexible time window
sedf-workflow-eventbridge-rule @ Enabled

Description Schedule ARN Schedule end time Created date
Triggers scdf-data-pipeline-workflow every 2 153 am:sws:scheduler:eu-west- - Oct 24, 2025, 23:18:25 (UTC+01:00)

minutes
2:402651950139:schedule/default/scdf-workflow-

eventbridge-rule

Execution time zone Last modified date
Schedule group name Europe/London Oct 24, 2025, 23:18:25 (UTC+01:00)

default
Action after completion

NONE

Schedule Target Retry policy Dead-letter queue Encryption

Target 1.

Target Execution role
Universal target EventBridgeSchec

Juler-GlueWerkfowRole [3

Service
AWS Glue

AP1
StartWorkflowRun

Payload
{ "Name™: "scdf-data-pipeline-workflow” }

EventBridge Rule Verification

After setting everything up, it's crucial to verify that the EventBridge rule is functioning as
intended. To do this, open the AWS Glue Console, and navigate to Monitoring. Then, select
Job run monitoring. This view provides a chronological list of all recent Glue job
executions.

Each time the EventBridge scheduler triggers your workflow, a new job run entry should
appear here. Under normal operation, you'll see the jobs starting one after another — for
example, scdf-etl-clean-split-job should finish before EDA Job Retry begins. This confirms
that the workflow is being executed sequentially as designed.

If you notice multiple jobs from the same workflow running simultaneously, it indicates
that a new workflow instance was triggered by EventBridge before the previous one
finished. This typically means that the schedule interval is too short for your workflow’s

execution time. To resolve this, consider increasing the interval — for instance, from 2
minutes to 15 minutes or longer — ensuring that each workflow run completes fully before
the next trigger starts.

A sample monitoring screenshot demonstrating this behavior is shown below:

AWS Glue ¢ Monitoring ...
tarted Start date range
ETL jabs 7Dy v

Job runs summary

62 1 0 52 9 85% 18

z TLin
» Data Catalog
» Data Integration and ETL — N
» Legacy pages Job runs (62) e (C) (actions v) ((view Clodwatch logs [1)

Q F runs b 1 2 3 4 5 8 7 > @

Job name v | Runststus ¥ | Type ¥ | Starttime (Local) ® | End time [Lo<al) ¥ | Runtime ¥ | Capacity ¥ | Workertype ¥ | DPUbours ¥
scdf-atl-claan-spit-job © rur Giva ETL 10/24/2025 235358 - . 10 G
S2d¥-foature-angineering-job O Glue ETL 10/28/2025 2350100 10/24/2025 23:51:36 1 minute ™ Gax o2
D Enable compact mods EDA Job ReTry @s Glue ETL 10/24/2025 23:47:54 10/24/202% 25:49:40 2 minutes 0 (R 0.27
D tnable new navigation scdf-atl-clean-spiit-job @s Glua ETL 10/24/2025 238458 10/24/2025 25:47:25 2 minutes 0 A% 038
Sc¥-featiare-angineering-job @ Glue ETL 10/24/2005 233514 10/24(2025 23:36:39 1 minute ™ G 023
EDA Jobs ReTry D Glue ETL 10/24/2025 23:33:04 10/24/302% 25:34:44 2 minutes L] X 0.26
scdf-foature-anginearing-job @s Glua ETL 10/24/2025 23IT16 10/24/2025 25:35:36 1 minute 0 A% 0.20
SEOT-etl-Clean-spit-job @s Glue ETL 10/24/2025 233019 10/24/2025 23:32:34 Z minutes L] [0.36
EDA Jobs ReTry s Glue ETL 10/24/2025 232589 10/24/2029 25:31:45 2 minutes L] X 0.28
scdf-foature-anginearing-job @ suce Glua ETL 10/24/2025 232816 10/24/2025 25:29:48 1 minute 0 A% 0.3

Additionally, you can verify the EventBridge-triggered workflow by checking the
CloudWatch log traces. Navigate to the CloudWatch service, then open Log groups and
select the group named /aws-glue/jobs/output. Inside this log group, click on Log streams
— each stream corresponds to an individual Glue job run triggered by your workflow.

By opening the most recent log stream, you can trace the exact sequence of events: when
the job started, whether it completed successfully, and how long it took to finish. Each
EventBridge trigger should correspond to a new log stream entry. If you see multiple
streams appearing within short intervals, it indicates overlapping workflow runs,
confirming that your schedule interval may still be too short.

Create log stream Search all log streams
g streams 9 9
By default, we only load the most recent log streams.
QU Fitter log streams or try prefix sear Exact match Show expired (D) Info 1 @
Log stream ¥ | Lastevent time v

2025-10-24 23:06:07 (UTC)

2025-10-24 23:03:34 (UTC)

2025-10-24 23:00:59 (UTC)

This screenshot displays the Amazon CloudWatch Log Streams page under the log group
/aws-glue/jobs /output, listing individual log streams corresponding to recent AWS Glue
job runs, each identified by a unique alphanumeric name. The “Last event time” column

shows the last timestamp of log activity, indicating when each job generated output. This
overview is essential for confirming when Glue jobs were triggered and assessing whether
multiple runs occurred closely together, which may indicate overlapping EventBridge
schedule executions.

2 Machine Learning Pipeline

2.1 Objective

This phase builds upon the feature-engineered dataset generated in the preceding stage.
Its primary aim is to train and evaluate demand forecasting models using the enriched
features available at s3://scdf-project-data/features/. The models are designed to capture
temporal patterns, as well as store- and item-level variations in sales behavior, to enable
more accurate and reliable demand predictions.

2.2 Model Preparation
Goal

Train two regression models on the processed feature dataset to forecast daily sales,
evaluate their predictive performance, and store the resulting models in Amazon S3 for
future deployment and analysis.

Model Selection

Linear Regression (Baseline Model)

Serves as an initial benchmark by modeling linear relationships between lag features and
sales data. Its simplicity and interpretability make it valuable for establishing reference
performance metrics against more complex models.

Random Forest Regressor (Advanced Model)

An ensemble-based, non-linear algorithm that effectively captures intricate interactions
among temporal and categorical predictors. Its robustness to noise and ability to handle
high-dimensional data make it suitable for real-world forecasting tasks.

Both models are implemented using PySpark MLIib, which provides distributed training
capabilities optimized for large-scale datasets. Integration with AWS Glue ensures efficient
data processing and scalable computation across distributed nodes.

Implementation in AWS Glue (Script Mode)

To maintain environment consistency, this phase is executed in AWS Glue Script Mode,
using the same IAM role as before (scdf-ingest-simulator-role-zgags9r0).

A new Glue job named scdf-ml-training-job is created.
The IAM policy attached to the role is extended to include:

"arn:aws:s3:::scdf-project-data/features/*",
"arn:aws:s3:::scdf-project-data/models/*",
"arn:aws:s3:::scdf-project-data/models_$folder$"

This grants read access to the feature-engineered dataset and write access for storing
trained models and evaluation outputs.

Code Walkthrough and Output Verification

The implementation for this stage is contained in the script:

Model Training Script

This script was executed in AWS Glue Script Mode under the job name scdf-ml-training-job.
This script extends the previous feature engineering phase, introducing the model training
and evaluation components of the pipeline. The walkthrough below outlines each major
step and verifies it against CloudWatch logs from the successful execution.

Loading the Feature-Engineered Dataset

The script begins by reading the feature dataset generated during the previous stage from:
s3://scdf-project-data/features/:

input_path = "s3://scdf-project-data/features/"
df = spark.read.parquet(input_path)
print("Feature dataset loaded successfully.")

CloudWatch Verification

2025-10-21T05:45:11.351Z Feature dataset loaded successfully.

https://github.com/vivekbhadra/API_Driven_Cloud_Nation_Solutions/blob/main/glue-script/glue_script_model_training.py

This confirms that the job successfully accessed the feature-engineered dataset, ensuring
seamless data continuity across pipeline stages.

Data Preparation for Model Training

Next, the dataset is transformed into a machine-learning-ready format. The relevant
features are combined into a single vector column using VectorAssembler, and the data is
split into training and test subsets.

feature_cols = ["store", "item", "year", "month", "day_of_week", "lag 1",
"lag 7", "rolling avg 7"]

assembler = VectorAssembler(inputCols=feature_cols, outputCol="features")
data = assembler.transform(df).select("features”,
col("sales").alias("label"))

train_df, test _df = data.randomSplit([@.7, 0.3], seed=42)
print("Data split into training and testing sets.")

CloudWatch Verification
2025-10-21T05:45:13.129Z Data split into training and testing sets.

This ensures that the model evaluation process will be statistically valid, based on a
consistent 70-30 training-to-testing ratio.

2.3 Model Training

Two regression models are trained using PySpark MLIlib — a Linear Regression baseline
and a more advanced Random Forest Regressor to capture non-linear feature interactions.

1r LinearRegression(featuresCol="features", labelCol="label")
rf = RandomForestRegressor(featuresCol="features", labelCol="label",
numTrees=50)

1r model lr.fit(train_df)
rf_model = rf.fit(train_df)
print("Both models trained successfully.")

CloudWatch Verification

2025-10-21T05:45:37.414Z Both models trained successfully.

This verifies that the training processes executed correctly across distributed Spark
workers in the Glue cluster.

2.4 Model Evaluation

Once training is complete, both models are rigorously evaluated using the Root Mean
Square Error (RMSE) metric — a standard measure of prediction accuracy in regression
and forecasting problems.

RMSE quantifies the average magnitude of prediction errors, penalising larger deviations
more heavily.

A lower RMSE value indicates that the model’s predicted sales values are closer to the
actual observed figures, reflecting higher predictive precision.

In this implementation, PySpark’s built-in RegressionEvaluator is used to compute RMSE
for each model:

evaluator = RegressionEvaluator(labelCol="label",
predictionCol="prediction", metricName="rmse")

for name, model in [("Linear Regression", 1lr_model), ("Random Forest",
rf_model)]:

predictions = model.transform(test_df)

rmse = evaluator.evaluate(predictions)

print(f"{name} RMSE: {rmse}")

Here's what the above code does:

1. The test dataset — unseen during training — is passed through each trained model
to generate predicted sales values.

2. The evaluator compares these predictions against the true sales (label column).

3. RMSE is then calculated as the square root of the mean squared difference between
predicted and actual values.

CloudWatch Verification

2025-10-21T05:45:38.303Z Linear Regression RMSE: 8.874350213730164
2025-10-21T05:45:39.513Z Random Forest RMSE: 8.654932560250954

Analysing RMSE Values

These results indicate that the Linear Regression model, serving as a baseline, achieved an
RMSE of approximately 8.87, while the Random Forest model performed slightly better at
8.65.

This improvement — though modest — demonstrates that the ensemble-based Random
Forest algorithm can better capture non-linear interactions, store-item dependencies, and
seasonal fluctuations that a simple linear model tends to overlook.

Moreover, this evaluation confirms that the engineered features (lags, rolling averages, and
temporal variables) are adding real predictive value.

The difference between the two models’ RMSE scores provides quantitative evidence that
the feature engineering phase has successfully introduced useful structure into the dataset
— a structure that tree-based models can exploit more effectively.

Overall, the evaluation step validates both the soundness of the feature engineering
process and the robustness of the ML pipeline, confirming readiness for deployment and
API-level integration in the subsequent stage.

2.5 Model Stability and RMSE Analysis Across Multiple Runs

To assess the stability and reliability of our machine-learning models, the Glue training job
was executed five separate times under identical configuration and seed conditions.

For each run, we recorded the Root Mean Squared Error (RMSE) for both models — Linear
Regression and Random Forest Regressor — as logged in CloudWatch.

RMSE Results from Five Runs

Run RMSE from Five Runs Random Forest RMSE

1 8.874350213730164 8.654932560250954

2 8.874350213730176 8.629820435109925

3 8.874350213730173 8.660118623716185

4 8.874350213730203 8.673607206839758

5 8.874350213730173 8.656603131893922

Statistical Summary

Model Mean RMSE Standard Deviation | Coefficient of
Variation
Linear Regression 8.87435 0.00000002 ~0.000002%
Random Forest 8.65462 0.0157 ~ 0.18%
Interpretation

Linear Regression

The RMSE for Linear Regression remained absolutely constant (to 10-12 decimal precision)
across all runs. This confirms that the training pipeline is fully deterministic — identical
data partitions and model coefficients were produced in every execution.

Such consistency is expected since:
e The model is parametric and convex (single global optimum).
e We used a fixed random seed and consistent preprocessing.

This demonstrates pipeline repeatability, an essential property of production-grade ML
systems.

Random Forest Regressor

The Random Forest model shows slight RMSE variation across runs (8.629 - 8.674),
corresponding to a standard deviation of just 0.0157.
This minor variability stems from:

e Random sampling of features and data subsets per tree.

e Spark’s distributed training order and partitioning effects.

A Coefficient of Variation of 0.18% indicates excellent model stability, confirming that
stochastic ensemble behaviour remains consistent across executions.

Conclusion
The multi-run RMSE evaluation demonstrates that:

1. The model training job in Glue is reliable enough for scheduled automation and
deployment in subsequent phases.

2. On average, Random Forest outperformed Linear Regression, achieving a lower
RMSE (= 8.65 vs 8.87).

3. The data pipeline and training processes are stable, deterministic, and reproducible.
4. Both models exhibit consistent predictive behaviour across executions.

5. Random Forest delivers slightly better generalisation without introducing significant
stochastic noise.

This analysis validates that the model training job in Glue is reliable enough for scheduled
automation and deployment in subsequent phases.

On average, Random Forest outperformed Linear Regression, achieving a lower RMSE
(= 8.65vs 8.87).

The improvement margin is modest (~2.5%), but it suggests that Random Forest better
captures non-linear dependencies among store, item, and temporal sales features.

Persisting Model Artifacts

Finally, both trained models are saved to the S3 location reserved for model artefacts:
s3://scdf-project-data/models/.

output_path = "s3://scdf-project-data/models/"
1r_model.write().overwrite().save(output _path + "linear_ regression_model")
rf_model.write().overwrite().save(output_path + "random_forest_model™)

print("Models saved to:", output path)

job.commit()

print("Machine Learning training job completed successfully at:",
datetime.now())

CloudWatch Verification

2025-10-21T05:45:46.080Z Models saved to: s3://scdf-project-data/models/
2025-10-21T05:45:46.084Z Machine Learning training job completed
successfully at: 2025-10-21 05:45:46.080364

2025-10-21T705:45:53.670Z Running autoDebugger shutdown hook.

These entries confirm the successful persistence of both models and the clean shutdown of
the Glue execution environment.

2.6 Performance Tuning

To enhance the predictive accuracy of the Random Forest model, a series of controlled
hyperparameter optimisations were introduced in the scdf-ml-training-job script.
These adjustments aimed to strike a balance between model complexity and generalisation
capability while maintaining the scalability required for distributed execution in AWS Glue.

The Random Forest Regressor configuration was updated as follows:

rf = RandomForestRegressor(
featuresCol="features",
labelCol="1abel",
numTrees=100,
maxDepth=12,
maxBins=32,
seed=42

Modified Parameters and Impact on efficiency

Parameter Value Definition and Impact
Purpose
numTrees 100 This defines the Increasing this

number of decision | value generally
trees to build in the | increases accuracy
forest and reduces
variance
(overfitting), as the
model averages
more predictions.

This but linearly
increases training
time, as 100 trees
must be built.

maxDepth

12

The maximum
number of splits
allowed down any
single decision tree

This controls
complexity. A deep
tree risks
overfitting by
memorizing noise.
Limiting it to 12
forces the model to
capture only the
general trends,
improving
generalization on
test data.

maxBins

32

The maximum
number discrete
intervals to which
continuous features
are mapped for
efficient splitting

This is a crucial
Spark optimization.
Lowering maxBins
significantly speeds
up training because
the cluster has
fewer potential split
points to evaluate
at each tree node,
this selected value
balances accuracy
with the need for
rapid distributed
execution

seed

42

An integer used to
initialise the
random number
generator

Ensures that every
time the job runs,
the initial split of
data and random
selection of
features/data
points are the same.
This is essential for
a reproducible
pipeline

The parameter tuning was aimed at the following trade-offs:

1. Complexity Control: By setting maxDepth=12, we prevent the model from becoming
overly complex i.e., high variance or overfitting, ensuring it remains robust when
forecasting sales on unseen data (test data).

2. Accuracy Boost: Setting numTrees=100 ensures the model’s final prediction is
stable and less prone to individual tree errors.

3. Glue/Spark Optimization: Setting maxBins=32 is a direct optimization for the
distributed environment, significantly reducing the compute time and memory
footprint of the Random Forest algorithm when running on AWS Glue.

Performance Comparison

Through controlled hyperparameter tuning, the Random Forest model’s predictive
accuracy was significantly enhanced, reducing the Root Mean Squared Error (RMSE) from
8.6 to 7.2. This outcome validates that optimization strategies, such as limiting (maxDepth)
and (numTrees) can achieve meaningful gains in model performance without
compromising the efficiency or scalability of the distributed Glue execution environment.

2.7 Prediction Generation and CloudWatch Verification

After completing model training and evaluation, the scdf-ml-training-job Glue job was
enhanced to perform prediction generation within the same workflow.

This unified approach ensures that the job now executes an end-to-end machine-learning
cycle — from loading the feature dataset, training and evaluating models, to generating and
persisting predictions in Amazon S3.

Code Walkthrough and Output Verification

The updated script — executed in AWS Glue Script Mode under the job name
scdf-ml-training-job — now performs the complete machine learning workflow in a
single execution. It includes dataset loading, feature vectorisation, model training,
evaluation using RMSE, prediction generation, and persistence of both predictions and
model artefacts to S3.

The following walkthrough highlights each key step alongside CloudWatch log verification.

The source code for prediction is kept at the public git repository created for this
assignment: ML Prediction.

https://github.com/vivekbhadra/API_Driven_Cloud_Nation_Solutions/blob/main/glue-script/glue_script_model_training_with_prediction.py

Generating Predictions on Test Data

After evaluating both models, the Glue job proceeds to the prediction phase, where it uses
the trained Random Forest Regressor to forecast sales values on the unseen test dataset.
This step demonstrates the model’s ability to generalise learned patterns — such as
seasonal trends, store-level variations, and lagged dependencies — beyond the data used
during training.

In PySpark, the transform() method applies the fitted model to a new DataFrame (here, the
test_df), automatically appending a new column named "prediction" that contains the
model’s output for each record.

predictions = rf_model.transform(test_df)

output_path = "s3://scdf-project-data/predictions/"

predictions.select("features"”, col("label").alias("actual sales"),

col("prediction").alias("predicted _sales")) \
.write.mode("overwrite").parquet(output_path)

print("Predictions written to:", output_path)
predictions.select("features", col("label").alias("actual sales"),
col("prediction").alias("predicted sales")) \

.show(5)

Here we are doing the following operation in subsequent stages:

rf_model.transform(test_df) runs inference in parallel across all Spark executors, producing
a new DataFrame that retains each feature vector along with its actual and predicted sales
values.

.select("features”, "label", "prediction”) extracts the relevant columns for interpretability —
specifically:

o features: a dense vector encoding all predictor variables (store, item, time, lag, and
rolling average features),

e label: the ground-truth sales value for that observation,

e prediction: the corresponding forecasted sales value.

The .write.mode("overwrite").parquet(output_path) statement ensures that the predictions
are persisted in S3 as a Parquet dataset at

s3://scdf-project-data /predictions/, ready for downstream analytics or visualisation.

The subsequent .show(5) command prints the top five predicted rows directly into the Glue
job logs, allowing real-time inspection of model behaviour without downloading the full
output dataset.

CloudWatch Verification

2025-10-25T06:33:41Z Predictions written to:
s3://scdf-project-data/predictions/

Sample predictions (top 5 rows):
Row(features=DenseVector([1.0,1.0,2013.0,1.0,1.0,12.0,15.0,10.0]),
actual sales=12.0, predicted sales=15.32)
Row(features=DenseVector([1.0,1.0,2013.0,1.0,2.0,12.0,8.0,10.43]),
actual sales=11.0, predicted sales=14.65)

This confirms that prediction outputs were successfully generated and stored, with
realistic values close to actual observations.

The CloudWatch logs verify that the prediction phase executed successfully and the output
was stored in the designated S3 path.
Each row in the output represents one data instance with:

e its encoded feature vector,
e the actual observed sales (label), and
e the predicted sales (forecast) generated by the model.

The sample results show predicted sales values such as 15.32 and 14.65 against actual sales
of 12.0 and 11.0, respectively — deviations of only 2-3 units, which align with the previously
computed RMSE of approximately 8.65.

This consistency confirms that the Random Forest model is producing plausible and
data-driven forecasts, rather than overfitted or random outputs.

Moreover, by saving the predictions to S3 in Parquet format, the pipeline ensures efficient
retrieval and scalability for later integration with business dashboards, demand analysis
modules, or API-based forecast services.

2.8 MLOps: Automating the Machine Learning Stage

To extend the existing DataOps pipeline into a full MLOps workflow, the Machine
Learning Glue job (scdf-ml-training-job) was incorporated as the final stage of the
scdf-data-pipeline-workflow.

This enhancement ensures that once data has passed through ingestion, preprocessing,
feature engineering, and exploratory analysis, model training, evaluation, and prediction
are triggered automatically — completing the end-to-end automation loop.

Adding MLOps Trigger and Attaching the Glue Job

To operationalise the Machine Learning stage within the existing data workflow, a new
trigger named trigger-machine-learning was added to the
scdf-data-pipeline-workflow.

This trigger uses the “ANY” condition, ensuring that the downstream
scdf-ml-training-job executes immediately after the
scdf-feature-engineering-job completes successfully.

As shown in the updated workflow (Figure X.X), the MLOps trigger now connects the
feature engineering output stage to the ML training and prediction phase.

This enables automated end-to-end orchestration, allowing the trained models and
prediction artefacts to be generated seamlessly within the same execution flow.

f,\
ra - ___\\ a
N - Add ™y
$ trigger ¢
b ’;
\‘(
scdf-feature-en
gineering-job

trigger-machin scdf-mi-training
e-learning -jok

Updated End-to-End Workflow with MLOps Integration

The final version of the scdf-data-pipeline-workflow now represents a fully
automated DataOps-to-MLOps orchestration chain, covering every stage of the data
lifecycle — from ingestion to machine learning prediction.

.

f\\

< hY
S add N
. . . > ey T

., trigger

~, -

T 1 scdf-et-clean-s Trigg) 3_Fea
pit-job

- H ’ E

and_cléa
tmgger-machin sedf-mi-trainin
job

f-feature-£n

wigger_02_Eo EDA Joh J0er_n3_Fe:
A RETTy WrE_Enginee... gineering-jo

Running the final workflow with ML Job

To start the final workflow, click on the Run workflow button at the workflow detail page.
The workflow will start and show the status as Running as shown in the screenshot:

@ Workflow successfully starting

The following workflow s now starting: “scdf-data-pipeline-workflow"

H H Last updated (UTC)
scdf—data-plpellne-workﬂow October 25, 2025 at 07:49:17 @ (Run workflow) (Delete)
Workflow details Advanced properties
Name Description Max concurrency
scdf-data-pipeline-workflow AWS Glue workflow orchestration for data pipeline -
automation

Last run Last modified Blueprint name Blueprint run Id
- October 24, 2025 at 15:17:26 -

Then go to the Job run monitoring page:

Job runs summary

Total runs Running Canceled successful runs Failed runs Run success rate DPU hours

72 0 0 61 11 85% 21

Job runs (73) into (Cctions v) (View CloudWatch logs [2) View run details

| Q Filter job runs by property | 1.2 5 4 5 6 7 8 > @&
Job name v | Runstatus ¥ | Type ¥ | starttime (Local) v | End time (Local) v | Runtime v | capacity ¥ | workertype v | DPUhours ¥
EDA Job ReTry @ starting Glue ETL 10/25/2025 08:50:12 - - 10 6.1
DA JobReT _— e
scdf-etl-clean-split-job @© succeeded Glue ETL 10/25/2025 08:47:37 10/25/2025 08:49:42 2 minutes 10 61X 033
= dlean_splitjob dicegeded pLialisIn
scdf-mi-training-job @ succeeded Glue ETL 10/25/2025 07:32:25 10/25/2025 07:34:04 2 minutes 10 61X 026
scdf-ml-training-job ® Failed Glue ETL 10/25/2025 07:29:11 10/25/2025 07:31:08 2 minutes 10 61X 0.29
scdf-ml-training-job @ succeeded Glue ETL 10/25/2025 07:19:30 10/25/2025 07:21:26 2 minutes 10 61X 030
scdf-ml-training-job ® railed Glue ETL 10/25/2025 07:14:37 10/25/2025 07:16:54 2 minutes 10 61X 036
scdf-feature-engineering-job @© succeeded Glue ETL 10/25/2025 00:20:10 10/25/2025 00:21:41 1 minute 10 61X 025
EDA Job ReTry @ succeeded Glue ETL 10/25/2025 00:17:48 10/25/2025 00:19:39 2 minutes 10 6.1 0.28
scdf-etl-clean-split-job @© succeeded Glue ETL 10/25/2025 00:14:58 10/25/2025 00:17:18 2 minutes 10 61X 036

scdf-feature-engineering-job @ succeeded Glue ETL 10/25/2025 00:05:12 10/25/2025 00:06:44 1 minute 10 61X 023

We can see the split job finished in about 3 minutes and then the EDA job has just started.
We need to now wait for all the jobs to finish and then check the CloudWatch logs.

Workflow Completion

After sometime we can see the workflow has completed:

H H Last updated (UTC]
scdf-data-pipeline-workflow oconer 25 nmseonn) (@) (oun worktion) Costeie)
Workflow details Advanced propertied
Name Description Max concurrency Last run status
scdf-data-pipeline-workflow AWS Glue workflow orchestration for data pipeline - @ completed
automation
Last run Last modified Blueprint name Blueprint run Id
October 25, 2025 at 07:56:57 October 24, 2025 at 15:17:26

All the glue jobs have succeeded as well:

Job runs (75) e (Cactions v) ((view Cloudwatch logs [2) View run details

| Q@ Fitter job runs by property | 1 2 3 4 5 6 7 8 > &
Job name v | Runstatus Vv | Type ¥ | Starttime (Local) v | End time (Local) v | Runtime v | Capacity ¥ | Workertype ¥ | DPUhours ¥
scdf-ml-training-job @ succeeded Glue ETL 10/25/2025 08:54:55 10/25/2025 08:56:57 2 minutes 10 6.1X 031
scdf-feature-engineering-job @ Succeeded Glue ETL. 10/25/2025 08:52:41 10/25/2025 08:54:25 2 minutes 10 G.IX 0.28
EDA Job ReTry @ Succeeded Glue ETL. 10/25/2025 08:50:12 10/25/2025 08:52:11 2 minutes 10 G.IX 030
scdf-etl-clean-split-job @ Succeeded Glue ETL. 10/25/2025 08:47:37 10/25/2025 08:49:42 2 minutes 10 G.IX 033

2.9 Integrating Final Workflow with EventBridge

We have just run our final workflow manually and made sure it is running successfully. Next
we have to run the workflow. So we will Enable our Eventbridge and see how that goes.

scdf-workflow-eventbridge-rule

Schedule detail

Schedule name Status Schedule start time Flexible time window
scdf-workflow-eventbridge-rule @ Enabled -

Description Schedule ARN Schedule end time Created date

Triggers scdf-data-pipeline-workflow every 2 E armaws:scheduler:eu-west- - Oct 24, 2025, 23:18:25 (UTC+01:00)
minutes

2:402691950139:schedule/default/scdf-workflow-

Execution time zone Last modified date
eventbridge-rule

Schedule group name Europe/London Oct 25, 2025, 09:11:46 (UTC+01:00)

default . .
Action after completion

NONE

As can be seen from the screenshot the EventBridge schedule has started. Also we can see
the workflow has been actuated by the EventBridge schedule:

scdf-data-pipeline-workflow

Workflow details Advanced properties

Name
scdf-data-pipeline-workflow

Last run

Description
AWS Glue workflow orchestration for data pipeline
automation

Last modified
October 24, 2025 at 15:17:26

Max concurrency

Blueprint name

) @ (run workflow) (Cpetete)
October 25, 2025 at 08:12:38

Last run status
¢ Running

Blueprint run Id

The status of the workflow is Running. The split and clean job has just started:

Monitoring i

Start date range

[7pay v |

Job runs summary

Total runs

76

Job runs (76) e

Running

1

Canceled Successful runs

0 o4

| Q Filter job runs by property

Job name

scdf-etl-clean-split-job

scdf-ml-training-job

scdf-feature-engineering-job

EDA Job ReTry
scdf-etl-clean-split-job

scdf-ml-training-job

scdf-ml-training-job
scdf-ml-training-job

scdf-ml-training-job

scdf-feature-engineering-job

Runstatus v | Type ¥ | Starttime (Local)

@ Running Glue ETL 10/25/2025 09:13:01
@ succeeded Glue ETL 10/25/2025 08:54:55
@ succeeded Glue ETL 10/25/2025 08:52:41
@ Succeeded Glue ETL 10/25/2025 08:50:12
© Succeeded Glue ETL 10/25/2025 08:47:57
@ succeeded Glue ETL 10/25/2025 07:52:23
® Failed Glue ETL 10/25/2025 07:29:11
© Succeeded Glue ETL 10/25/2025 07:19:30
@ Failed Glue ETL 10/25/2025 07:14:57
@ Succeeded Glue ETL 10/25/2025 00:20:10

v

11

End time (Local)
10/25/2025 08:56:57
10/25/2025 08:54:25
10/25/2025 08:52:11
10/25/2025 08:49:42
10/25/2025 07:34:04
10/25/2025 07:31:08
10/25/2025 07:21:26
10/25/2025 07:16:54

10/25/2025 00:21:41

Failed runs

v

RuN success rate DPU hours

85% 22

(Cactions v) ((view Cloudwateh logs [3) View run details

Run time

2 minutes

2 minutes

2 minutes

2 minutes

2 minutes

2 minutes

2 minutes

2 minutes

1 minute

1.2 3 4 5 6 7 8 > @&

Capacity ¥ | Workertype ¥ | DPUhours ¥

10 G.IX

10 61X 0.31
10 61X 0.28
10 G.IX 0.30
10 G.IX 033
10 61X 0.26
10 G.IX 0.23
10 G.IX 030
10 61X 0.36
10 G.1X 0.23

We need to wait till the workflow finishes and comes to a complete state.

After waiting for sometime we can see our workflow which was actuated by the
EventBridge schedule has Completed:

scdf-data-pipeline-workflow

Workflow details Advanced properties

Name
scdf-data-pipeline-workflow

Last run
October 25, 2025 at 08:22:32

Description
AWS Glue workflow orchestration for data pipeline
automation

Last modified
October 24, 2025 at 15:17:26

All the Glue jobs have succeeded as well:

Max concurrency

Blueprint name

Lest updated (UTC) () (" pun workflow) (Coetete)
October 25, 2025 at 08:23:33

Last run status
@ completed

Blueprint run Id

(Cactions ¥) ([view CloudWatch logs [7)

12 3 4 5 6 7 8 > @

Job runs (79)
Q Filter;

Job name v | Runstatus ¥ | Type ¥ | Starttime (Local) v | Endtime (Local) v | Runtime ¥ | Capacity ¥ | Workertype ¥ | DPUhours ¥

scdf-mil-training-job @ Succeeded Glue ETL 10/25/2025 09:20:39 10/25/2025 09:22:32 2 minutes 10 G.1X 0.30
scdf-feature-engineering-job @ Succeeded Glue ETL 10/25/2025 09:18:23 10/25/2025 09:20:08 2 minutes 10 G.1X 0.28
EDA Job ReTry @ succeeded Glue ETL 10/25/2025 09:16:05 10/25/2025 09:17:53 2 minutes 10 G.1X 0.29

scdf-etl-clean-split-job @ succeeded Glue ETL 10/25/2025 09:13:01 10/25/2025 09:15:33 2 minutes 10 G.1X 0.40

So now we have a full end to end Automated ML pipeline which is fully functional.

3 API Access

Retrieving Pipeline Status via AWS APIs

The next stage of the project focused on exposing internal pipeline details through an
API-driven interface, allowing authorised users to query the operational status of both data
and machine-learning pipelines. This capability eliminates the need for users to manually
inspect AWS services such as Glue or S3 while still maintaining full transparency and
observability.

The design objective was to demonstrate how a cloud-native solution can offer
programmatic visibility into system health and performance by leveraging AWS APIs.
Through this approach, stakeholders can validate data ingestion, model training, and ETL
workflows in near real time, ensuring traceability and accountability across the pipeline
lifecycle.

Retrieve Key Application Details Using AWS APIs

To achieve this, a Lambda function named scdf-status-check-api-access was developed to
act as the central API access layer for the solution. This function was implemented in
Python using the boto3 SDK, allowing seamless interaction with AWS Glue, Amazon S3, and
Amazon CloudWatch. Each of these services contributes a unique aspect of pipeline
observability.

Source Code

The source implementation for this Lambda function is hosted in the public GitHub
repository:

API Driven Cloud Nation Solutions

https://github.com/vivekbhadra/API_Driven_Cloud_Nation_Solutions/blob/main/api-access-script/scdf_status_check.py

The script, named scdf_status_check.py, contains the complete Lambda handler logic,
including:

e AWS Glue job discovery and run status retrieval
e Amazon S3 artefact verification

e CloudWatch metrics integration (extensible)

e Structured console output for verification

The code was developed and tested within the AWS Lambda environment (Python 3.13
runtime), following least-privilege access principles and modular design for clarity and
scalability.

Code Walkthrough and Output Verification

The Lambda code is organised into clearly defined functional segments, each
corresponding to a specific AWS service integration. This section explains the
implementation logic and verifies functionality using actual execution logs.

Lambda Initialisation

Upon invocation, the Lambda function begins by initialising boto3 clients for the required
AWS services — namely AWS Glue and Amazon S3:

glue = boto3.client('glue')
s3 = boto3.client('s3")

boto3 is the official AWS SDK for Python and is the most appropriate choice for this
implementation because it is natively supported within the AWS Lambda runtime
environment. It provides a high-level, object-oriented API for interacting with AWS
services, eliminating the need for external dependencies or REST calls.

By using boto3:

e The Lambda can securely authenticate through its execution role, without requiring
static credentials.

o All calls to Glue, S3, and CloudWatch are handled through fully managed, retry-safe
API sessions.

e Data can be retrieved and formatted within the same Python environment, ensuring
minimal latency and consistent error handling.

Log Verification

A descriptive header is then printed to mark the start of execution:

Automatic Discovery of AWS Glue Jobs

Once the clients are initialised, the Lambda proceeds to automatically discover all Glue
jobs available in the account. This step eliminates the need for hardcoded job names,
ensuring that any newly created or updated jobs are automatically included in the
monitoring scope.

Implementation snippet:

jobs_response = glue.get_jobs(MaxResults=20)
job_names = [job['Name'] for job in jobs_ response['Jobs']]
print(f"Discovered {len(job_names)} Glue jobs in this account.\n")

The function calls the get_jobs() API, which returns metadata for all Glue jobs configured
under the same AWS account and region. The resulting job names are extracted into a list
and used for subsequent get_job_runs() queries.

This method demonstrates dynamic pipeline introspection — a key attribute of cloud-native
automation. It allows the system to adjust automatically as new ETL or machine-learning
jobs are deployed without requiring code changes.

Log Verification

Discovered 6 Glue jobs in this account.

This confirms that the Lambda successfully enumerated all six Glue jobs, validating the
correctness of IAM permissions and boto3 API integration.

Retrieving Four Key Application Details

For each discovered Glue job, the function queries the get_job_runs() API to fetch its most
recent execution details. This provides visibility into real-time operational status and
historical performance.

Core implementation logic:

runs = glue.get_job_runs(JobName=job, MaxResults=1)
if runs.get('JobRuns'):
last _run = runs['JobRuns'][9]
job_details.append({
"Job Name": job,
"Status": last_run.get('JobRunState', 'N/A"),
"Started On": str(last_run.get('StartedOn’', 'N/A")),
"Execution Time (s)": last_run.get('ExecutionTime', 'N/A")

})

From this metadata, four essential application-level details are extracted:

1. Job Name - identifies the Glue pipeline component.

2. Status - reflects its current or most recent state (SUCCEEDED, FAILED, or
RUNNING).

3. Started On - timestamp marking the beginning of the run.

4. Execution Duration (seconds) - total runtime, used to assess efficiency and job
health.

To make verification straightforward, Lambda formats these results into a tabular log
output, printed directly to CloudWatch.

Log Verification

=== Verification Table: Four Application Details Retrieved via AWS APIs ===

Job Name Status Started On Exec Time (s)
EDA Job ReTry SUCCEEDED 2025-10-20 05:45:58.693000 107
EDA_ExportToCSV_Job SUCCEEDED 2025-10-19 16:30:47.197000 151
EDA_GlueJob SUCCEEDED 2025-10-19 17:31:35.547000 135
scdf-etl-clean-split-job SUCCEEDED 2025-10-19 10:38:51.851000 149
scdf-feature-engineering-job SUCCEEDED 2025-10-20 06:25:24.627000 72

scdf-ml-training-job SUCCEEDED 2025-10-21 06:28:40.961000 115

Verification of Execution Performance

Each Lambda invocation concludes with a summary record in CloudWatch, confirming
total execution time, memory usage, and runtime environment:

REPORT RequestId: eda9626d-5266-44c2-a0db-7256a8867355
Duration: 1202.82 ms | Billed Duration: 1203 ms | Memory Size: 128 MB | Max
Memory Used: 97 MB

Analysis

e The function completed in ~1.2 seconds, well within the configured 30-second
timeout.

e Memory utilisation remained under 100 MB, demonstrating efficient handling of
AWS API calls.

e The runtime environment (python:3.13.v64) aligns with the latest AWS Lambda
execution standards.

This confirms Lambda's stability, efficiency, and compliance with best practices for
lightweight, API-driven observability layers.

Appendix

Full Source Code in Github

The full source code for this project can be found at the following public repository which
was created for the assignment purposes:

API Driven Cloud Native Solution Assignment [

How to check CloudWatch Logs in AWS?

Go to CloudWatch.

e CloudWatch

[CC]
Overview i i 3h 12h d w custom B || UTCtimezone ¥ | @ 5
CloudWatch < e
= v) (rtervy e g
Favorites and recents >

Dashboards Get started with CloudWatch view getting started page [2
You don't have any alarms, metrics or default dashboard. Once you set them up they will be displayed here.

> Alarms Ao @0 ©o

& @ @ o

Log Anomalies

et alarms on any of your metrics to Create and name any CloudWatch Monitor using your existing system, Write rules to indicate which events
Live Tall recelve notification when your metric dashboard CloudWatch-Default to application and custom log files. are of interest to your application and
Logs Insights crosses your specified threshold. display it here. View logs [what automated action to take.
Create alarms [2 Create a default dashboard [2 View events [2
Contributor Insights — — —
» Metrics New
T i i Explore ob: 1
» Application Signals new Get started with Observability solutions
(APM)
CloudWatch Solutions out-of-the-b ity for AWS services and popular workloads. These ready-to-use, customizable solutions are designed to get you up
» Network Monitoring and running quickly with monitoring at AWS.
» Insights 3 Iﬂ @ ofo
= Ca Y
Settings
Reliable observability solutions tailored to specific Available in Amazon native and open-source platforms. Simplify the process of instrumenting and gaining
Telemetry config workloads and use cases Insights Into your workloads.

Getting Started
What's new

Get started with Application Insights inro

Set up monitors and dashboards to detect issues and resolve problems with enterprise applications, databases, and workloads.
» How it works

On the left hand pane, click Log Groups.

https://github.com/vivekbhadra/API_Driven_Cloud_Nation_Solutions

e CloudWatch > Log groups [¢]

CloudWatch < Log groups (9) @ View in Logs nsights Start tailing [—

Favorites and recents » By default, we only load up to 10000 log groups.
| Q Fitter log groups or try pattern search | T — 1 [}
Dashboards
b Alarms Ao @0 @0 O/ togaroup v | Logelass v | Anomalyd.. v | Dataprotection v | Sensitivedata.. v | Retention v | Metrichi
¥ Logs (O /aws-glue/jobs/error Standard Configure - > Never expire B
Log groups (J /aws-glue/jobs/logs-v2 Standard Configure S > Never expire B
Log Anomalies .
(J /aws-glue/jobs/output standard Configure - - Never expire -
Live Tail - .
Logs Insights [/aws/tambda/Openskyingesttambda Standard Configure - - Never expire -
Contributor Insights O /aws/lambda/OpenskylngestLambda2 Standard Configure - - Never expire -
» Metrics Ne (0 /aws/lambda/ProcessOpenSkyKinesisData standard Configure - - Never expire -
» Application Signals ~ New [J /aws/lambda/ReadFromDynamoDB standard Configure - - Never expire -
(APM) =
[0 /aws/lambda/TestLambdacallingAP! standard Configure = s Never expire S
» Network Monitoring
) [0 /aws/lambda/scdf-ingest simulator standard Configure = s Never expire S
» Insights
“« »
Settings

Telemetry config
Getting Started

What's new

Under the Log Groups there are three different type of folders called * /error, * /logs-v2
and * /output:

Log groups (9) @ View in Logs Insights Start tailing Create log group

By default, we only load up to 10000 log groups.

| Q@ Futer tog groups or try pattem search J Exact match ! ®
Log group v | Logeclass v Anomaly d... ¥ Data protection v | Semsitivedata.. ¥ | Retention v Metric fil
[aws-gluejobs/error Standard Configure o = Never expire o
(0 /aws-glue/jobs/logs-v2 Standard Configure S s Never expire =
/aws-glue/jobs/output standard Configure - - Never expire -

Go inside /aws-glue/jobs/output and you will see all the logs generated and arranged in
date and time of the run:

Log streams Tags Anomaly detection Metric filters Subscription filters Contributor In:

hts Data protection Field indexes Transformer

Log streams (6) @ pelete (Create log stream) (Search all log streams)
1]

| Q. Fitter tog streams or try prefix search | () Exact mateh [show expired.

Log stream v | Lasteventtime v |
() Jr_fef150fac788f0491f64e011751bac00fee07b51e5bB4fI0aBd2d6975a54728d 2025-10-20 05:31:54 (UTC)

|r_7ffafe5c05¢ce1ef78519F1dec0667252744841c2d221b9ed2765276ddf2eSc7f 2025-10-19 17:35:59 (UTC)

Jr_9570e5f28026965dd9e0073245d00fdbba74a2da7aed 85641 7cf6dfB0BS8age3 2025-10-19 16:35:17 (UTC)

jr_04b9c71200fd0da8d9724cce246bf3974b5cf890c 1bb1106€9c0d44c8bcb22d 2025-10-19 13:06:55 (UTC)

Jr_465f9115e920f89300d57680c 159d5ef17e239702758450f2db736452923 2025-10-19 12:59:05 (UTC)

Jr_ba6f6d5b71ab6cb 1ff78d7b59ab220ecdee25bae15ee879f5287f02eead109fa 2025-10-19 10:41:19 (UTC)

	
	
	
	
	API-driven Cloud Native Solutions (S1-25_CCZG506)
	Assignment I
	Table of Content
	
	1 Data Pipeline
	1.1 Business Understanding
	Overall Architecture
	Dataset Source

	1.2 Data Ingestion from Public Dataset (Kaggle)
	Dataset Source
	Download Procedure
	Upload to S3
	Create S3 Bucket for Ingestion
	Upload to S3 (raw/)

	1.3 Data Preprocessing
	Key Objectives
	Overview of AWS Glue and PySpark
	Why We Chose AWS Glue with PySpark
	Data Preprocessing with AWS Glue
	Creating Glue Job in AWS
	Python ETL Script for Glue Job
	GitHub Source
	Developing the Python ETL Script
	Job Initialisation
	Reading the Raw Data from S3
	Data Cleaning and Transformation
	Writing the Cleaned Data to the Processed Zone
	Splitting the Data for Model Training and Testing
	Writing Training and Testing Data to S3
	Finalising and Committing the Job
	IAM Role and Policy Setup for AWS Glue ETL
	Create a Custom IAM Role for AWS Glue
	Create the IAM Role
	Attach Custom IAM Policies

	Running the ETL Job in AWS Glue
	Enhancing the Preprocessing Step
	Column Type Conversion and Logging
	Missing Value Imputation
	Summary Statistics
	Sales Column Normalisation
	Improved Traceability via CloudWatch Logs

	1.4 Exploratory Data Analysis (EDA)
	Establishing the EDA Environment
	Code Walkthrough
	Initialising the Spark and Glue Contexts
	Loading the Processed Dataset
	Verifying Schema and Sample Records
	
	Interpretation and Outcome

	Understanding Dataset Structure
	Inspecting the Schema and Data Types
	Sample Records
	Exploratory Data Insights
	Descriptive Statistics for Sales
	Temporal Sales Trends
	Store-Level Performance Analysis
	Item-Level Performance Analysis
	Missing Value Check
	Correlation Analysis and Output Persistence
	Numerical Correlation Analysis
	Inference

	Feature Engineering and Model Training Preparation
	Objective
	Establishing the Feature Engineering Environment
	Code Walkthrough and Output Verification
	AWS Glue Job Setup
	Reading the Processed Dataset
	Creating Temporal Features
	Lag and Rolling Average Features
	Handling Missing Values and Persisting Outputs

	1.5 DataOps Automation and Scheduling
	Objective
	AWS Glue Workflow
	Creating Glue Workflow
	Setting Up Triggers for Sequential Execution
	
	Testing and Verifying the Workflow
	Monitoring the workflow progress
	Validating Logs in CloudWatch
	Preprocessing Job
	Exploratory Data Analysis (EDA) Job
	Feature Engineering Job
	Verification Summary

	1.6 Automating AWS Glue Workflows with EventBridge
	Create the EventBridge Rule
	EventBridge Rule Configuration
	Select Target for Scheduled Execution
	Configure Schedule Settings and Permissions
	Permissions: Create Custom IAM Role
	Step 1: Define Trusted Entity
	Step 2: Attach Permissions Policies
	Step 3: Name and Save the Role
	EventBridge Rule Verification

	2 Machine Learning Pipeline
	2.1 Objective
	2.2 Model Preparation
	Goal
	Model Selection
	Implementation in AWS Glue (Script Mode)
	Code Walkthrough and Output Verification
	Loading the Feature-Engineered Dataset
	CloudWatch Verification
	Data Preparation for Model Training
	CloudWatch Verification

	2.3 Model Training
	CloudWatch Verification

	2.4 Model Evaluation
	CloudWatch Verification
	Analysing RMSE Values

	2.5 Model Stability and RMSE Analysis Across Multiple Runs
	RMSE Results from Five Runs
	Statistical Summary
	Interpretation
	Linear Regression
	Random Forest Regressor
	Conclusion

	Persisting Model Artifacts
	CloudWatch Verification

	2.6 Performance Tuning
	Modified Parameters and Impact on efficiency
	Performance Comparison

	2.7 Prediction Generation and CloudWatch Verification
	Code Walkthrough and Output Verification
	Generating Predictions on Test Data
	CloudWatch Verification

	2.8 MLOps: Automating the Machine Learning Stage
	Adding MLOps Trigger and Attaching the Glue Job
	Updated End-to-End Workflow with MLOps Integration
	Running the final workflow with ML Job
	Workflow Completion

	2.9 Integrating Final Workflow with EventBridge

	3 API Access
	Retrieving Pipeline Status via AWS APIs
	Retrieve Key Application Details Using AWS APIs
	Source Code
	Code Walkthrough and Output Verification
	Lambda Initialisation
	Log Verification
	Automatic Discovery of AWS Glue Jobs
	Log Verification
	Retrieving Four Key Application Details
	Log Verification
	Verification of Execution Performance

	Appendix
	Full Source Code in Github
	How to check CloudWatch Logs in AWS?

