Introduction to Data Analytics,
Big Data, Hadoop and Spark

Lesson 3

Disclaimer

These study notes summarize key concepts from Cloud Computing, Theory and Practice, Third Edition by Dan C. Marinescu,
Department of Computer Science, University of Central Florida, Orlando, FL, United States. They are for educational and
informational use only and do not replace or reproduce the original book.

No copyright infringement is intended, and these notes are created under the principles of fair use. The author is not affiliated with or
endorsed by the original authors or publishers. If there are any concerns regarding this content, please contact me for resolution at

vivek.bhadra@gmail.com

mailto:vivek.bhadra@gmail.com

Understanding Analytics

e Analytics involves the extensive use of data, statistical models, and quantitative analysis to
drive decisions and actions.

e I|tincludes explanatory and predictive modeling techniques to uncover insights that improve
business strategies.

Purpose of Analytics
Analytics helps organizations by:
v Uncovering Hidden Patterns

e |dentifying trends and anomalies in data

e Example: 2 out of 100 stores had no sales for a promotion item because it was not on the
right shelf

Understanding Analytics

v Deciphering Unknown Correlations

e Revealing unexpected relationships between variables
e Example: The famous "Beer and Diapers" story — retailers discovered a purchasing pattern where
men buying diapers often also bought beer

v Understanding Trends

e Analyzing customer preferences and market behaviors
e Example: What do users like about a popular product that has growing sales?

v Extracting Business Intelligence

e Identifying key drivers of sales and profitability
e Example: Popular items during specific holiday sales

Benefits of Analytics in Business

Analytics enhances various aspects of business operations:
v Effective Marketing

e Targeted advertising and personalized recommendations
v Better Customer Service & Satisfaction

e Predicting customer needs and improving engagement
v Improved Operational Efficiency

e Optimizing inventory management and reducing waste

v Competitive Advantage

e Staying ahead of competitors by making data-driven decisions

"Beer and Diapers" story

One evening in the 1990s, a supermarket’s data analysts stumbled upon something unexpected.
As they combed through sales data, they noticed a strange pattern—men, particularly young
fathers, were buying diapers and beer together.

At first, it made no sense. Why would two completely unrelated products appear in the same
shopping cart so often? But then it clicked. These were new dads, sent out on late-night diaper
runs, and while they were at it, they’d grab a pack of beer for themselves.

The store managers saw an opportunity. Instead of keeping beer and diapers in their usual
separate aisles, they placed them closer together. The result? Sales for both shot up. More dads
spotted the beer while grabbing diapers and made an impulse purchase.

This became one of the most famous stories in retail analytics, proving that data doesn’t just
confirm what you already know—it reveals what you never even thought to ask.

Process of Analysis: Understanding Data Transformation

Data — Information — Knowledge — Wisdom (DIKW)

Data analysis involves a structured process where raw data is gradually refined into meaningful insights
that drive business decisions. The process follows these key stages:

1.

Raw Data

o The foundation of any analysis. Includes sales transactions, customer interactions etc.

Information
o Information is data that has been processed and given context, making it understandable.

o Example: Aggregated weekly sales data instead of individual transactions

Knowledge

o Knowledge is information that has been further processed and analyzed to explain how

something works.
o Example: Adding promotional events, pricing changes, social media trends to explain

sales variations

Actionable Insights (Wisdom)
o Final refined stage where knowledge is synthesized into strategic decisions

o Example: Identifying which promotions work best or predicting future demand

Process of Analysis: Understanding Data Transformation

Insights is the ability to connect the dots between disparate information and
knowledge enabling understanding. Insights allows for knowing
how something works on top of how it works.

Key Stages of Data Transformation

B wnh =

Collecting — First, raw data is gathered from various sources.

Organizing — Next, the data is structured and formatted for efficient access.
Summarizing — Key trends and metrics are identified from the structured data.
Analyzing — Patterns and relationships are discovered using statistical or computational
techniques.

Synthesizing — Finally, insights from the analysis are integrated for informed
decision-making.

Importance of Context & Metadata

Raw data alone lacks meaning and can lead to misinterpretation without context. Metadata helps
explain influencing factors such as time periods, locations, market conditions, and customer
segments, making analysis more accurate.

v Context Avoids Misinterpretation: A sudden drop in sales might seem alarming, but metadata
(e.g., a seasonal dip or new competitor entry) provides clarity.

v Metadata Enhances Analysis: Adding details like time, location, or market conditions improves
data accuracy and relevance.

v Informed Decision-Making: Businesses use metadata to ensure insights are correctly
interpreted, avoiding misleading conclusions.

Example: A winter clothing brand sees a drop in sales in June. Without seasonality as context,
the decline might be misread as a loss of popularity.

Context and metadata turn raw data into actionable insights, ensuring data-driven decisions are

accurate and meaningful.
10

Analytics Maturity Model

Data

Enterprise
Leadership
Targets

Analysts

Analytically
Impaired

Inconsistent, poor quality

NA

No awareness or
interest

NA

Few skills in specific
functions

Localized
Analyti

Usable in functional
silos

Siloes of data, tech. and
talent

Only at functional or
process level

disconnected

Few isolated analysts

source: Competing on Analytics, Thomas Davenport

Analytics
Aspirations

Beginning to create
centralized repositories

Early stages of enterprise-

wide approach

Begins to recognize
importance of analytics

Efforts aligned to small
set of targets

Influx of analysts in key
target areas

Integrated data
warehouse

Key data, tech. and
analysts are centralized

Support for analytical
component

Centered on few key
domains

Specialized analysts in
central organization

Analytical
Competitor

Relentless search for new
data & metrics

All key analytical resources
centrally managed

Strong passion for analytics

Supports overall strategic
objectives

Mix of analytics experts and
amateurs
"

IS W e

Types of Analytics

e Descriptive (What we have done in the past?)
o Descriptive analytics focuses on summarizing historical data to understand past events.
It provides insights into trends, patterns, and key business metrics.
e Diagnostic (Why we see past results?)
o Diagnostic analysis is a type of descriptive analytics that focuses on understanding
why past events occurred by identifying patterns, correlations, and relationships in data.
e Predictive (Where we are going and when?)
o Predictive analytics uses historical data, statistical models, and machine learning
techniques to forecast future trends and events.
e Prescriptive (What Actions Should Be Taken?)
o Prescriptive analytics goes beyond predicting outcomes—it suggests the best actions to
take based on predictions and optimization models.

12

Types of Analytics

TYPES OF DATA ANALYTICS
? Prescriptive
Predictive
Diagnostic
., | Descriptive |
= Why did
= What ithappen?
happened?

€ =

COMPLEXITY

Introduction to Hadoop & Big Data

What is Big Data?

Big Data refers to large, complex datasets that traditional data processing systems cannot
efficiently handle. These datasets exhibit high volume, velocity, and variety.

Why Hadoop?

e Distributed systems have gained popularity for their efficiency in processing big data. Several
approaches exist for processing large volumes of data by leveraging a compute cluster.

e Hadoop uses a divide-and-conquer paradigm.
e It breaks big problems into smaller ones, distributes the tasks across nodes, and later

aggregates individual results to form the final output.

14

Big Data Analytics

Big Data Analytics is about handling and making sense of large, complex, and fast-moving data
that traditional databases can't process efficiently. It helps businesses analyze trends, improve
operations, and make better decisions using advanced computing techniques.

Characteristics

e Works with Large and Fast Data — Businesses generate massive data every second (e.g.,
social media, transactions, sensors). Big Data tools handle this scale efficiently.

e Goes Beyond Traditional Databases — Standard databases (RDBMS) struggle with huge
unstructured datasets, but technologies like Hadoop, Spark, and cloud computing solve
this challenge.

e Speeds Up Decision-Making — Instead of waiting for reports, companies can analyze
real-time data and react quickly (e.g., optimizing supply chains).

15

Big Data Analytics

Characteristics

Moves Computation Closer to Data — The principle of locality ensures that analysis
happens where the data is stored, avoiding slow data transfers.

Handles Both Past and Live Data — It supports batch processing (analyzing past records)
and stream processing (real-time data insights), depending on business needs.

Bridges IT and Business Teams — Data scientists, IT teams, and business leaders work
together to extract meaningful insights and drive strategy.

Gives a Competitive Edge — Companies that use Big Data better understand customer
behavior, predict trends, and optimize performance ahead of competitors.

16

Challenges in Adopting Big Data in Organizations

1. Lack of Executive Support

e Securing funding and leadership backing for Big Data initiatives is a major hurdle.

e Many executives are hesitant due to unclear ROI (Return on Investment) and high
implementation costs.

2. Data Silos and Resistance to Sharing

e Different departments often store and control their own data, making collaboration difficult.

e Business units may hesitate to share data due to security concerns or lack of trust.

3. Shortage of Skilled Professionals

e Finding qualified data analysts, data scientists, and engineers who can handle massive
datasets is challenging.
e The demand for skilled professionals often exceeds supply, leading to high hiring costs.

17

Challenges in Adopting Big Data in Organizations

4. Scalability and Storage Issues

e As data grows in volume, velocity, and variety, organizations struggle to scale storage and
processing efficiently.

e Choosing between on-premise vs. cloud storage and real-time vs. batch processing can be
complex.

5. Structured vs. Unstructured Data

e Businesses must decide how to combine structured data (databases, spreadsheets) with
unstructured data (social media, images, emails) for analysis.
e Internal vs. external data sources add another layer of complexity.

18

Challenges in Adopting Big Data in Organizations

6. Effective Reporting and Visualization

e Collecting data is not enough—organizations must determine the best way to present and
interpret findings.
e Poor data visualization can make insights difficult for decision-makers to understand.

7. Translating Insights into Action

e Even when data-driven insights are available, companies often struggle to convert them into
concrete business strategies.
e Without a clear action plan, Big Data investments may not deliver expected results.

19

Introduction to Hadoop

Overview of Hadoop

e Hadoop is an open-source, Java-based software framework for distributed storage and
processing of large data sets.

e Itis widely used in marketing analytics, machine learning, image processing, and web
crawling.

e Hadoop enables scalable, fault-tolerant data processing by distributing workloads across
multiple machines.

20

Introduction to Hadoop

Major Users of Hadoop

IT Companies: Apple, IBM, HP, Microsoft, Yahoo, Amazon.
Media Companies: New York Times, Fox.

Social Networks: Twitter, Facebook, LinkedIn.
Government Agencies: Federal Reserve.

Real-World Use Case:

e In 2012, Facebook’s Hadoop cluster had 100 petabytes of data and was growing at 0.5
petabytes/day.
e By 2013, over half of Fortune 500 companies were using Hadoop.

21

Introduction to Hadoop

What does Hadoop offer?

Hadoop was developed to solve Big Data challenges by providing:

Distributed Storage Hadoop Distributed File System (HDFS), which is designed to store
large datasets across multiple machines in a fault-tolerant and scalable manner.

Parallel Processing via MapReduce, a distributed computing model that processes large
datasets by dividing tasks into smaller sub-tasks executed across multiple nodes in parallel.
Scalability which ensures that a system can efficiently handle increased workloads by
adding more resources without performance degradation

Fault Tolerance which enables a system to continue functioning correctly even when one or
more components fail.

22

Hadoop Architecture

HDFS (Hadoop Distributed File System)

e Stores data across multiple nodes
e Replication Factor ensures fault tolerance
e Blocks: Large files are divided into 64MB/128MB blocks

YARN (Yet Another Resource Negotiator)

e Job Scheduling and Resource Allocation
e Enables multiple applications to share cluster resources efficiently

MapReduce Processing Framework

e Map Phase: Processes input data into key-value pairs
e Shuffle & Sort Phase: Organizes data for processing
e Reduce Phase: Aggregates results

23

Hadoop Architecture

Distributed
Processing

Distributed |
storage

Yet Another
Resource
Negotiator(Job
scheduling and
Resource Manager)

Map Reduce

Hadoop

Java Library and
utilities(Java Scripts)

Image Source: GeeksforGeeks, Hadoop Architecture, retrieved from GeeksforGeeks

24

https://www.geeksforgeeks.org/hadoop-architecture/

HDFS (Hadoop Distributed File System)

Distributed Storage:

e Large files are divided into blocks (default size: 64MB or 128MB).

e These blocks are stored across multiple nodes in a Hadoop cluster.

Replication for Fault Tolerance:

e Each block is replicated across multiple nodes (default: 3 copies).
e If one node fails, data is still accessible from other replicas.

25

HDFS (Hadoop Distributed File System)

Scalability:

e New nodes can be added dynamically to handle more data.
e No need to modify existing configurations.

Write-Once, Read-Many Model:

e Files in HDFS are typically written once and read multiple times, making it ideal for
analytical workloads.

NameNode & DataNodes Architecture:

e NameNode: Stores metadata (file locations, block mappings).
e DataNodes: Store actual file blocks and handle read/write operations.

26

How data is processed in Hadoop?

e A Hadoop system has two components, a MapReduce engine and a database (Hadoop
Distributed File System or HDFS)

e HDFS is a highly performant distributed file system written in Java.

e The Hadoop engine on the master of a multi-node cluster consists of a job tracker and a task
tracker

e The Hadoop engine on a slave has only a task tracker.

e The job tracker on the master node receives a MapReduce job from a client (user of the
Hadoop System) and dispatches the work to the task trackers (slave) running on the nodes of a
cluster.

e To increase efficiency, the job tracker attempts to dispatch the tasks to the available slaves
closest to the place where the task data was stored.

The task tracker supervises the execution of the work allocated to the node.
Several scheduling algorithms have been implemented in Hadoop engines, including
Facebook's fair scheduler and Yahoo's capacity schedulers.

27

How data is processed in Hadoop?

In this example, a Hadoop cluster using
HDFS consists of a master node and
four slave nodes.

Each node runs a MapReduce engine
and HDFS.

The job tracker on the master node
communicates with:

e Task trackers on all nodes.
e The name node of HDFS.

The name node shares data placement
details with the job tracker to reduce
communication overhead between nodes
storing and processing data.

Slave node

MapReduce engine

‘ Task tracker

HDFS
Data node Z\

AN

Slave node

MapReduce engine

Task tracker

HDFS

Data node

Client

]

S

Master node

MapReduce engine

Slave node

MapReduce engine |

Task tracker

HDFS
Task tracker 1 batynads
. -
‘ |
Job tracker
/ \
HDFS Slave node
Name node MapReduce engine
i_ Task tracker
V
Data node

Data node

28

How HDFS achieves Fault Tolerance?

HDFS achieves fault tolerance through data replication. When a file is stored in HDFS it is
divided into blocks (default size: 128MB) and each block is replicated across multiple nodes

in the cluster.
The replication factor determines how many copies are maintained (default 3).

What Happens During a Node Failure?

If a DataNode (which stores file blocks) fails, the NameNode detects the missing blocks and
automatically recreates them on another available node.
This ensures that the data remains accessible without interruption.
Assume a file is split into Block A, Block B, and Block C, with a replication factor of 3.
e HDFS distributes these blocks across multiple nodes:
e Node 1 stores: A1, B1, C1
e Node 2 stores: A2, B2, C2

e Node 3 stores: A3, B3, C3
If Node 1 fails, the system still has copies on Node 2 and Node 3, ensuring no data loss.

29

MapReduce

MapReduce in Hadoop is a well-organized strategy for processing huge amounts of data in a
distributed system. Hadoop follows a Master-Slave architecture. The Master node manages the
job and assigns tasks to multiple Slave nodes. Here's how each MapReduce stage fits into this

structure:

1. Mapping Stage (Happens on the Slave Nodes)
e The JobTracker (Master Node) assigns tasks to multiple TaskTrackers (Slave
Nodes).
Each Slave node (TaskTracker) runs a Map task on a portion of the input data.
The data is split into chunks, and each Mapper processes its assigned data in parallel.
e Output: Key-value pairs like ("word", 1), ("another", 1).

30

MapReduce

2. Sorting Stage (Happens on the Slave Nodes)

e Each TaskTracker locally sorts the output from the Map stage by key.
e All "apple” keys are grouped together, "banana” keys together, and so on.
e This step is still handled at the Slave nodes, preparing for the next stage.

3. Combiner Stage (Happens on the Slave Nodes, if enabled)

e [|f a Combiner function is used, it aggregates local results on each Slave node before

sending data over the network.
e Example: If "apple"” appears five times in the same block, the Combiner on the Slave

node sums it up before sending ("apple” - 5 instead of five separate "apple” - 1"
entries).

31

MapReduce

4. Shuffling Stage (Happens Between Slave and Master Nodes)

e The sorted key-value pairs are sent to the appropriate Reducer node.

e This data shuffling is managed by HDFS (Hadoop Distributed File System) and
coordinated by the JobTracker (Master Node).

e Data is transferred from TaskTrackers (Slaves) to the Reducer Node.

5. Reduce Stage (Happens on the Slave Nodes)

e The TaskTracker running a Reducer on a Slave node processes all data for a given key.
e It sums up, aggregates, or performs other computations.
e Final output is stored back into HDFS.

32

Map Function in MapReduce

In Hadoop MapReduce, the Map function is the first phase of processing that takes an input
dataset and transforms it into intermediate key-value pairs. This phase is executed in parallel

across multiple nodes, improving scalability and efficiency.

How the Map Function Works

1. Reads Input Data
o The dataset (e.g., a large text file) is split into smaller input splits.

o Each split is processed by a separate instance of the Map function.
2. Processes Data

o The function tokeniszs the text (breaks it into words).

o It assigns a key-value pair for each word:

m Key: The word itself.
m Value: The number 1 (indicating one occurrence of the word).

33

Example python Map function

#!/usr/bin/env python3
import sys
Read input line by line
for line in sys.stdin:

words = line.strip().split()

for word in words:

print(f"{word)\t1") # Output: word 1
https://github.com/vivekbhadra/AWS/blob/main/BigData/mapper.py

34

https://github.com/vivekbhadra/AWS/blob/main/BigData/mapper.py

Example python Reduce function

#!/usr/bin/env python3 else:

import sys if current_word:

current_word = None

print(f"{current_word\t{current_count}")
current_count = Ofor line in sys.stdin:

. .) current_word = word
word, count = line.strip().split("\t")

_ current_count = count
count = int(count)

Print last word count
if word == current_word:

if current_word:
current_count += count

print(f"{current_word\t{current_count}")

https://qithub.com/vivekbhadra/AWS/blob/main/BigData/reducer.py

35

https://github.com/vivekbhadra/AWS/blob/main/BigData/reducer.py

Setup Hadoop Cluster in AWS : Step by Step Guide

https://techfortalk.co.uk/2025/02/24/set-up-a-hadoop-cluster-on-aws-emr-a-step-by-step-quide/

36

https://techfortalk.co.uk/2025/02/24/set-up-a-hadoop-cluster-on-aws-emr-a-step-by-step-guide/

HDFS - stores structured and unstructured data.
YARN — Manages cluster resources and job scheduling
Data Ingestion:
° Flume — Handles unstructured data (e.g., social media, logs).
° Sqoop — Transfers structured data between Hadoop and relational
databases.

Processing & Analytics:

° MapReduce — Processes data using different programming
languages.

° Apache Spark — In-memory data processing for faster computation.

Hive & Drill — SQL-based querying on Hadoop.
° Pig — Uses scripting for data transformation.

Streaming & Indexing:

. Kafka & Storm — Real-time data processing and event streaming.
° Solr & Lucene — Search and indexing functionalities.

Database & Scheduling:

° HBase — NoSQL database for real-time read/write access.
° Oozie — Job scheduling and workflow automation.

Management & Coordination:

° Zookeeper & Ambari — Manage and monitor Hadoop clusters.

MAPREDUCE

(Processing using

different languages)

@?

Hadoop Ecosystem

HIVE & DRILL
(Analytical
SQL-on-Hadoop)

<N

APACHE

DRILL

SPARK (In-Memory,

KAFKA & STORM

MAHOUT &

SPARK MLlib
(Machine learning)

it

PIG 31:7.893
(Scripting)

(NoSQL Database)

SOLR & LUCENE
(Searching

Data Flow Engine) (Streaming) i{ & Indexing)
Spar s
N (VININ | e
APACHE olr ~
Resource
Management YA R N
Storage " HE]FS

ZOOKEEPER
& AMBARI
(Management
& Coordination)

W Apache
' Ambari

Flume

[£ |3 [in]
Bt
=8

Unstructured/
Semi-structured Data

Structured Data

37

Issues with MapReduce on Hadoop

Slow Processing for Low-Latency Applications

o MapReduce relies on disk-based storage, which makes it much slower compared to

in-memory frameworks like Apache Spark.
o Itis not suitable for real-time data processing where quick responses are required

(e.g., fraud detection, live streaming analytics).

Inefficient for Iterative Computations

o Many applications, like machine learning and graph processing, require multiple

iterations over data.
o Since MapReduce writes intermediate results to disk after each step, it slows down

such tasks significantly.
o Alternative frameworks (e.g., Apache Spark) keep data in memory, reducing delays.

38

Issues with MapReduce on Hadoop

One-Pass Computation Model

o MapReduce processes data in a fixed sequence (Map — Shuffle — Reduce), making
it inflexible for complex analytical workflows.

o Advanced use cases often require multiple stages of computation, making
MapReduce inefficient.

High Development Complexity

o Writing efficient MapReduce programs requires manual coding and optimization,
which can be complex.

o SQL-based alternatives like Hive simplify querying but still suffer from the same
performance bottlenecks.

39

In-Memory Computing — A Faster Approach

What is In-Memory Computing? EAD EAD W
" ==y —
In-memory computing is a method of U ERsST a—- S

. SECON
processing data where datasets are HDFS ITERATION HDFS |rroamon HDOFS

stored in RAM (Random Access
Memory) instead of traditional disk
storage.

This allows for significantly faster Hl;s

: : ITERATION ITERATION
computations by enabling parallel RAM RAM
processing across multiple

computers in a cluster.

40

Fast and Efficient Big Data Processing with Apache Spark

Apache Spark is a powerful big data processing framework designed for speed, scalability,
and flexibility. Unlike traditional MapReduce, Spark performs computations in memory, avoiding
repeated disk read/write operations, which significantly enhances performance.

Core Operators in Spark’s Programming Model:

e Mappers (Transformations on Data Elements)
m Mappers apply a function to each element in a dataset and return a new transformed
dataset.
s Used for data cleaning, conversion, or feature extraction in machine learning.
s Example: Converting a dataset of product prices from USD to EUR by applying a
function to each price.

41

Fast and Efficient Big Data Processing with Apache Spark

Core Operators in Spark’s Programming Model:

e Reducers (Aggregation and Summarization)
s Reducers combine data based on a key and apply an aggregation function (sum,
count, max, etc.).
m Commonly used for computing totals, averages, and summaries across large
datasets.
s Example: Counting the number of sales for each product category.

42

Fast and Efficient Big Data Processing with Apache Spark

Core Operators in Spark’s Programming Model:

e Joins (Combining Datasets on Common Keys)
m Joins bring together multiple datasets by linking them on a shared key (similar to SQL
joins).
m Helps in integrating data from different sources, such as customer data and
transaction logs.

m Example: Joining a customer dataset with a purchase history dataset using the
customer ID as the key.

43

Fast and Efficient Big Data Processing with Apache Spark

Core Operators in Spark’s Programming Model:

e Group-bys (Efficient Aggregation on Groups of Data)

m Organizes data into groups based on a particular column and applies an operation to
each group.

m Used in trend analysis, sales aggregation, and customer segmentation.
m Example: Grouping sales by region and calculating the total revenue for each region.

44

Fast and Efficient Big Data Processing with Apache Spark

Core Operators in Spark’s Programming Model:

e Filters (Extracting Data Based on Conditions)
m Filters remove unwanted data by applying a condition.
m Essential for data preprocessing, refining datasets, and removing anomalies.
m Example: Filtering out transactions below $10 to analyze only high-value purchases.

45

Why is Spark Faster Than Hadoop?

In-Memory Computation

e Unlike Hadoop MapReduce, which writes intermediate results to disk, Spark keeps data in
RAM, drastically reducing 1/0O overhead.
e This makes Spark up to 100 times faster for certain workloads.

Resilient Distributed Datasets (RDDs)

e Spark introduces RDDs, a fault-tolerant abstraction that efficiently stores intermediate
computation results.
e This allows developers to cache datasets and reuse them across multiple transformations.

Efficient DAG Execution

e Spark uses a Directed Acyclic Graph (DAG) execution model, optimizing the order of

execution to minimize redundant computations. "

Spark Word Count Example (PySpark Implementation)

from pyspark import SparkContext

Initialize Spark Context

sc = SparkContext("local", "WordCount")

Read input file from HDFS or local file system
text_file = sc.textFile("hdfs://path/to/input.txt")

Step 1: Split lines into words

words = text_file.flatMap(lambda line: line.split(" "))

Step 2: Convert words into (word, 1) key-value pairs

word_pairs = words.map(lambda word: (word, 1))

Step 3: Reduce by key to count word occurrences

word_counts = word_pairs.reduceByKey(lambda a, b: a
+Db)

Step 4: Save the result to HDFS or local storage
word_counts.saveAsTextFile("hdfs://path/to/output")
Stop Spark Context

sc.stop()

47

|deal Apache Spark Applications

Low-Latency Computations: Real-Time Processing at Memory Speed

e One of Spark’s biggest advantages is its ability to cache datasets in memory, eliminating
repeated disk reads and writes. This allows it to perform computations at near memory
speeds, making it highly suitable for applications that require real-time or near-real-time
data analysis.

e For example, in a big data analytics system, multiple users might need to query the same
dataset repeatedly. If this dataset is cached in memory, Spark can serve multiple queries
instantly without having to reload the data from storage each time. This drastically reduces
query response times

48

|deal Apache Spark Applications

Spark is an excellent choice for:

e Real-time financial fraud detection — Analyzing millions of transactions per second to

detect anomalies.
e Stock market analysis — Running queries on live stock data to make high-frequency trading

decisions.
e Streaming analytics — Processing live data from IoT sensors, social media feeds, and

network logs.

49

|deal Apache Spark Applications

Efficient Iterative Algorithms: Essential for Machine Learning & Al

Many machine learning and Al algorithms require multiple passes over the same dataset.
Traditional systems like Hadoop reload data from disk for each iteration, making them
incredibly slow for such workloads. Spark, however, stores intermediate results in
memory, enabling efficient iterative processing.

For example, in training a machine learning model, the algorithm may need to repeatedly
refine its parameters based on the data. If Spark keeps the dataset in memory, it avoids
unnecessary disk 1/0, making iterations significantly faster.

50

|deal Apache Spark Applications

This feature makes Spark suitable for:

e Deep Learning & Al — Training large-scale neural networks efficiently.

e Graph Processing (PageRank, Social Network Analysis) — Analyzing relationships in
networks like LinkedIn and Twitter.

e Recommendation Systems — lteratively improving product recommendations based on user

behavior.

With Spark, each subsequent iteration shares data through memory rather than reloading it from
disk, making it orders of magnitude faster for iterative tasks.

51

Why Spark Excels in These Applications

Unlike traditional big data tools, Spark is built around Resilient Distributed Datasets (RDDs),
which allow it to:

1. Cache frequently accessed data in memory for repeated use.

2. Distribute processing across multiple nodes, ensuring parallel execution.

3. Optimize execution through DAG (Directed Acyclic Graph) scheduling, reducing
unnecessary computations.

52

Cloud Computing Basics

These have been covered in the Introduction to CC slides (link below):

e CC Definition
e 3-4-5rules
e |aaS, PaasS, SaaS

https://techfortalk.co.uk/2025/02/21/introduction-to-cloud-computing/

53

https://techfortalk.co.uk/2025/02/21/introduction-to-cloud-computing/

