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Language Used for Implementation 
C++ (GCC 13.2, Ubuntu 24.04 LTS)​
Supporting Tools: make, shell scripts (bash), AWS EC2 environment. 

Video Presentation 
A full end to end video presentation of the assignment can be found in the following 
Google Drive link:  

Video Presentation Group 8 

Additional Features Added (Beyond Problem 
Statement) 
Several enhancements were incorporated into the project to improve robustness, 
usability, and observability, while strictly preserving the distributed mutual 
exclusion (DME) semantics defined in the problem statement. 

1.​ Automatic Peer Connection and Retry Mechanism:​
Each client now attempts to connect to its peer indefinitely until successful, 
removing dependency on start-up order. This ensures both nodes can come 
online asynchronously without coordination. 

2.​ Server-Side Auto-Recovery:​
The server automatically re-creates the chat.txt file if it is missing or deleted, 
ensuring that the shared database is always available and consistent. 

3.​ Structured Logging with Timestamps:​
Every distributed event (REQUEST, REPLY, RELEASE, POST, VIEW) is logged 
with a timestamp and node identifier. This enables precise verification of 
Lamport clock ordering and DME correctness. 

4.​ Threaded Client Design:​
Each client runs two concurrent threads — one for user input (view, post, 
quit) and another for continuously listening to peer messages. This allows the 
system to process peer requests even when a user is idle or typing. 

5.​ Improved Error Handling and Timeout Management:​
If a peer becomes unresponsive or a REPLY is not received within the defined 
timeout period, the client logs an explicit “peer unresponsive” error, ensuring 
the system fails gracefully. 

https://drive.google.com/drive/folders/14iznMFVY1MPoSGNPntw6dIBW4JZ_GF0F?usp=sharing


6.​ Evidence Packaging (Makefile Extension):​
An additional Makefile target (make pack) automatically gathers logs, chat 
history, and execution outputs into an evidence/ directory for streamlined 
submission and evaluation. 

 



Distributed Application Code 
The full source code for the distributed chat application is available at:​
GitHub Repository: https://github.com/vivekbhadra/chatroom 

The codebase follows a modular structure, divided into: 

●​ server/ – Implements the TCP server that maintains the shared chat.txt file 
and handles VIEW and POST requests. 

Github Link: https://github.com/vivekbhadra/chatroom/tree/main/server  

●​ client/ – Contains client-side logic for user interaction, message handling, 
and communication with both the server and peer nodes. 

Github Link: https://github.com/vivekbhadra/chatroom/tree/main/client  

●​ common/ – Includes shared utilities such as networking, logging, and 
timestamp handling. 

Github Link: 
https://github.com/vivekbhadra/chatroom/tree/main/common  

Each component adheres to a POSIX-compliant design, ensuring that the code runs 
seamlessly on Linux (tested on Ubuntu 24.04 AWS EC2 instances).​
All socket operations, mutual exclusion protocols, and message exchanges conform 
to the RA (Ricart–Agrawala) distributed algorithm specification. 

Distributed Mutual Exclusion (DME) Code 
The DME logic is implemented in the files: client/DME.hpp and client/DME.cpp. 

Github Link: 
https://github.com/vivekbhadra/chatroom/blob/main/client/DME.cpp  

Key Features and Algorithmic Behaviour 

●​ Implements the Ricart–Agrawala algorithm using message exchanges: 
○​ REQUEST <timestamp> <node_id> 
○​ REPLY <node_id> 
○​ RELEASE <node_id> 

●​ Synchronises access to the shared file through a peer-to-peer coordination 
mechanism — no central coordinator is used. 

https://github.com/vivekbhadra/chatroom
https://github.com/vivekbhadra/chatroom/tree/main/server
https://github.com/vivekbhadra/chatroom/tree/main/client
https://github.com/vivekbhadra/chatroom/tree/main/common
https://github.com/vivekbhadra/chatroom/blob/main/client/DME.cpp


●​ Each node maintains: 
○​ A Lamport logical clock (m_lamportTs) 
○​ Mutual exclusion state flags (m_requesting, m_inCs, m_deferReply) 
○​ A condition variable for handling reply notifications (m_cv) 

List of Test Case Executed  
Test 
Case 
No. 

Test Case Scenario 

1 Client Initialisation Synchronisation and Peer-Wait Verification 

2 Verify if one client dies the other fails to enter Critical Section 

3 Shared File Maintained by Server Node 

4 Server Recovery: Verify Automatic Recreation of the Chat Database 
if Deleted 

5 Text-Based UI Supporting view and post 

6 Client-Side Timestamp and Identification 

7 Simple Append Semantics for post 

8 Verification of Ricart–Agrawala Critical-Section Entry Criteria 
(Proof of DME working) 

9 Verification of Lamport Timestamp Ordering in Distributed Mutual 
Exclusion (Proof of DME working) 

10 Exclusive post Access Using Distributed Mutual Exclusion (Proof of 
DME working) 

11 Server-Side Handling 

12 Concurrent view Operation 



Assignment Objective 
The objective of this assignment is to develop a Distributed Chat Room application 
that allows software project team members to exchange text messages, comments, 
and notes in real time. The project demonstrates the design and implementation of 
a distributed mutual exclusion (DME) algorithm for synchronising access to a 
shared resource across multiple nodes. 

Problem Statement 
Implement a 3-node distributed system that functions as a Chat Room application.​
 One of the nodes acts as the server, maintaining a shared file resource that stores 
all chat messages.​
 The other two nodes act as clients, which interact with the shared file through a 
distributed middleware that ensures mutual exclusion during write operations. 

The system supports two user commands: 

●​ view – retrieves and displays all messages from the shared file. 
●​ post <text> – appends a user’s message (with timestamp and ID) to the 

shared file, ensuring only one writer at a time through distributed mutual 
exclusion. 

The mutual exclusion protocol used must be distributed (not centralised). The 
implementation separates: 

1.​ The middleware that implements the DME algorithm. 
2.​ The application that uses this middleware for chat operations. 



 

Figure 1: General assignment objective at high level 

Overall Software Architecture  

Single Flat File Chat Database  
The system is designed as a three-node distributed chatroom comprising one 
server node and two client nodes, connected over TCP sockets to simulate a 



realistic distributed environment. The server is responsible for maintaining a single 
shared resource (chat.txt) which stores all chat messages, each tagged with the 
sender’s ID and local timestamp. 

Multiple Read (View Operation) 
The client nodes execute the user-side application logic and interact with the 
server through two commands: view and post. The view command retrieves the 
current chat content without any locking requirement, allowing multiple users to 
view concurrently.  

Single Exclusive Write (Post Operation) 
The post command, however, invokes the Distributed Mutual Exclusion (DME) 
mechanism to ensure that only one client can write to the shared file at any given 
time. 

Ricart–Agrawala Algorithm (Mutual Exclusion) 
The DME middleware implements the Ricart–Agrawala algorithm, using Lamport 
timestamps for ordering requests and enforcing exclusive write access through a 
sequence of REQUEST–REPLY–ENTER–RELEASE messages exchanged between the 
two clients. This coordination prevents concurrent writes while maintaining 
decentralised control—no single client acts as a master for access management. 

By combining the TCP-based communication layer, DME coordination middleware, 
and a simple text-based user interface, the system effectively demonstrates 
distributed coordination, mutual exclusion, and consistent shared-state 
management across networked nodes. 

 



 

Figure 1: Distributed Chatroom System Architecture  

Communication Protocol 
All modules are implemented in C++ and deployed on three separate AWS EC2 
cloud nodes (one server and two clients) to simulate a real distributed environment. 
Although the assignment did not mandate a specific communication protocol, TCP 
sockets were chosen for their simplicity and reliability. TCP provides built-in 
guarantees of connection establishment, ordered delivery, and retransmission, 
which greatly simplify the implementation of distributed coordination and message 
exchange. This ensures that VIEW, POST, and Ricart–Agrawala (RA) control 



messages are delivered consistently without requiring custom reliability 
mechanisms. 

While the Ricart–Agrawala algorithm is conceptually multicast-based—where each 
node broadcasts REQUEST, REPLY, and RELEASE messages to all peers—the same 
semantics are implemented here using pairwise TCP connections between clients. 
This approach achieves identical correctness in mutual exclusion while remaining 
easier to implement, debug, and verify. 

Multicast was therefore not implemented in this version, as it would introduce 
additional complexity for message reliability, acknowledgment, and 
ordering—features already handled efficiently by TCP. The system remains 
extensible, and multicast could be incorporated in future versions if broadcast 
efficiency or scalability became necessary. 

System Components 
From a software architecture standpoint, the system is composed of three primary 
modules:  

●​ Server  
●​ Client  
●​ and Distributed Mutual Exclusion (DME) Middleware.  

Each implemented in C++ and deployed on separate AWS EC2 instances to simulate 
a realistic distributed environment. The components communicate over TCP 
sockets using simple line-based message exchanges, forming a modular, layered 
design where networking, coordination, and application logic are cleanly separated. 
This structure supports extensibility and facilitates debugging by isolating 
concerns between the communication layer, mutual exclusion logic, and user-level 
commands (VIEW and POST). 

Server (ServerMain.cpp) 
The server module (ServerMain.cpp) is implemented as a single-threaded process 
responsible for maintaining the shared chat file (chat.txt) and responding to client 
requests over TCP. The server continuously listens on port 7000, accepts one client 
connection at a time, processes the incoming command, and then closes the 
connection before waiting for the next client. 

The server handles exactly two commands: 



●​ VIEW: Reads and returns the full contents of the shared chat file to the 
requesting client. Since this operation is read-only, multiple clients can issue 
VIEW commands at any time without any locking or coordination. 

●​ POST: Appends a new line to chat.txt containing the client’s local timestamp, 
user ID, and message text, and then sends an OK acknowledgment to the 
client. 

To ensure consistency, the server relies on the Distributed Mutual Exclusion 
(DME) protocol implemented on the client side. This ensures that only one client at 
a time is permitted to issue a POST command, effectively serialising write 
operations without requiring any additional locking or concurrency handling on the 
server itself. 

This single-threaded design keeps the server simple, deterministic, and easy to 
maintain. Since clients coordinate among themselves using the DME protocol, the 
server remains stateless and lightweight—its sole responsibility is to perform file 
I/O operations (VIEW and POST) as directed by authenticated client requests. 

Client (ClientMain.cpp) 
The client module (ClientMain.cpp) serves as the user-facing component of the 
distributed chatroom. Each client runs independently on a separate AWS EC2 node 
and provides a simple command-line interface supporting three commands — view, 
post "<text>", and quit. 

Upon startup, each client launches two concurrent threads to handle distributed 
coordination and user interaction in parallel: 

●​ Peer Communication Thread (peerAcceptLoop)​
This thread listens for incoming Distributed Mutual Exclusion (DME) 
messages — specifically REQUEST, REPLY, and RELEASE — from the peer 
client. It ensures that DME message handling continues in the background 
even while the user is entering commands. This design prevents blocking and 
enables real-time coordination between clients. 

●​ User Interaction Thread (userInputLoop)​
This thread manages all user operations through a text-based CLI. When the 
user enters a command, the following behaviour occurs: 

○​ view: The client connects to the server on TCP port 7000, sends a 
VIEW request, and displays the complete contents of the shared chat 
file (chat.txt). Since this operation is read-only, multiple users can 
perform it simultaneously without coordination. 

○​ post "<text>": Before posting, the client initiates the Ricart–Agrawala 
(RA) distributed mutual exclusion handshake by sending a REQUEST 



message to the peer and waiting for REPLY acknowledgements. Once 
exclusive access is granted, it connects to the server and issues a 
POST command containing its user ID, local timestamp, and message 
text. After the server returns an OK, the client broadcasts a RELEASE 
message, signalling that the critical section is free. 

At startup, if a client detects that the peer node is not yet online, it waits and 
periodically retries the DME connection until successful. This ensures that both 
clients are synchronised before any write operations occur. 

All client actions — including command inputs, RA message exchanges, connection 
retries, and server responses — are logged with timestamps for traceability. The 
two-thread architecture cleanly separates user operations from distributed 
coordination, ensuring that the system remains responsive, consistent, and 
synchronised even under concurrent activity. 

Ricart–Agrawala Algorithm - DME Middleware (DME.cpp) 
The Distributed Mutual Exclusion (DME) middleware, implemented in DME.cpp, 
coordinates exclusive write access between the two client nodes using the 
Ricart–Agrawala algorithm. It operates entirely in a peer-to-peer fashion, ensuring 
that only one client can perform a POST at any given time while allowing 
concurrent VIEW operations. 

Each client exchanges REQUEST, REPLY, and RELEASE messages with its peer, 
using Lamport timestamps to maintain a consistent logical ordering of events 
across nodes. When a client wishes to post, it broadcasts a REQUEST containing its 
timestamp; once all required REPLIES are received, it safely enters the critical 
section to send its message to the server. After completion, it issues a RELEASE 
message to notify the peer that access is free. 

This mechanism guarantees mutual exclusion, fairness, and freedom from 
deadlock, ensuring that chat updates occur in a globally consistent order. Detailed 
logs of these message exchanges confirm the correct sequencing of distributed 
coordination events and demonstrate that no two clients ever write concurrently to 
the shared file. 

Network Utilities (NetUtils.cpp, NetUtils.hpp) 
The Network Utilities module provides a compact, reusable TCP communication 
layer shared by both the server and client programs. It abstracts all socket-level 
operations—such as binding, listening, connecting, sending, and receiving—behind 
simple blocking functions with line-oriented framing. 



These functions include TcpListen() for setting up listening sockets, 
TcpConnect() and TcpConnectHostPort() for outbound connections, RecvLine() 
for reading newline-terminated messages, and SendAll() / SendLine() for reliably 
transmitting full lines of text. Each operation includes timestamped diagnostic 
output for traceability and debugging, allowing message exchanges to be observed 
in real time during distributed execution. 

By isolating low-level networking details within this module, the design cleanly 
separates transport management from the higher-level logic of both the chatroom 
application and the Distributed Mutual Exclusion (DME) middleware. This modular 
structure improves clarity, reusability, and portability while keeping the application 
code focused on distributed coordination rather than socket handling. 

Overall Execution Flow 
The distributed chatroom operates through a clearly defined request–response 
cycle between the two client nodes and the central file server. Each user command 
(view or post) follows a distinct communication path coordinated via TCP sockets 
and, in the case of posting, the Ricart–Agrawala (RA) mutual exclusion protocol. 

View Operation (Concurrent Reads) 
When either client issues the view command, it directly connects to the server and 
transmits a VIEW request. The server reads the contents of the shared chat file 
(chat.txt) and streams it back line-by-line until completion. Because this operation 
is strictly read-only, multiple clients can perform VIEW simultaneously without 
requiring coordination or mutual exclusion. The server is capable of handling 
multiple incoming VIEW requests concurrently, ensuring non-blocking and 
consistent visibility of the shared chat history. 

Post Operation (Exclusive Writes) 
When a client executes post "<text>", it must first obtain exclusive write access 
using the Distributed Mutual Exclusion (DME) middleware. The client initiates the 
Ricart–Agrawala handshake by sending a REQUEST message that carries its 
Lamport timestamp to the peer node. The peer replies with a REPLY message once 
it determines that it is safe for the requester to enter its critical section. 

After receiving the required REPLY acknowledgement, the initiating client enters its 
critical section, establishes a TCP connection to the server, and sends a POST 
command containing its user identifier, local timestamp, and message text. This 
ensures that at any given moment, only one client is permitted to modify the 
shared file while others wait for the critical section to be released. 



Lamport Timestamp Increment 
Each client maintains a Lamport logical clock to establish a consistent ordering of 
distributed events. The timestamp is incremented whenever a REQUEST or 
RELEASE message is sent and is updated on receiving a peer’s REQUEST as the 
maximum of the local and received timestamps plus one. This logical clock 
mechanism ensures deterministic ordering of access requests and enforces strict 
mutual exclusion without relying on synchronised physical clocks. 

Server Update and Release 
Upon receiving a valid POST, the server appends a new entry to chat.txt containing 
the client’s local timestamp, user identifier, and message text, and responds with an 
OK acknowledgment. The client then issues a RELEASE message to its peer, 
signalling that the critical section is now free for others. 

This sequence guarantees that the shared file is always updated in a consistent, 
serialised order while maintaining concurrency for read operations. The 
combination of TCP-based delivery and Ricart–Agrawala coordination ensures 
reliable communication, ordered access, and a clear separation between 
concurrent reads and mutually exclusive writes — faithfully implementing the 
distributed collaboration semantics required by the assignment. 

Filesystem Organisation 
$ tree​
.​
├── bin​
│   ├── client​
│   └── server​
├── client​
│   ├── ClientMain.cpp​
│   ├── ClientMain.o​
│   ├── DME.cpp​
│   ├── DME.hpp​
│   ├── DME.o​
│   └── Makefile​
├── common​
│   ├── NetUtils.cpp​
│   ├── NetUtils.hpp​
│   └── NetUtils.o​
├── create_structure.sh​



├── debug.hpp​
├── Makefile​
├── README.md​
├── server​
│   ├── Makefile​
│   ├── ServerMain.cpp​
│   └── ServerMain.o​
├── setup.sh​
├── start_client1.sh​
├── start_client2.sh​
└── start_server.sh 

Chatroom Application Code-walkthrough 
All modules are implemented in C++ and deployed on three separate cloud 
nodes—one server and two clients—to simulate a real distributed environment. 

Communication between all nodes uses TCP sockets with simple, line-based 
messaging to ensure predictable and readable communication between distributed 
processes. 

Source Code Repository 
The complete source code for the distributed chatroom system, including all 
modules — Server, Client, DME Middleware, and Network Utilities — is publicly 
hosted on GitHub.​
This repository contains the latest working version, tested across distributed 
nodes. 

Repository Link:​
 🔗Distributed ChatRoom 

Server (ServerMain.cpp) 
The server is the central component that maintains the shared file (chat.txt). It 
listens for client connections on TCP port 7000, processes incoming requests, and 
responds according to the command type. 

int server_fd = TcpListen(7000);​

https://github.com/vivekbhadra/chatroom


printf("Server listening on port 7000...\n");​
​
while (true)​
{​
    int client_fd = accept(server_fd, NULL, NULL);​
    std::thread(HandleClient, client_fd).detach();​
} 

The server opens a listening socket using the helper function TcpListen() and 
spawns a new thread for each incoming client connection. This allows multiple 
clients to issue VIEW commands concurrently. 

The server then processes commands sent by the clients: 

if (cmd == "VIEW")​
{​
    HandleView(client_fd);​
}​
else if (cmd == "POST")​
{​
    HandlePost(client_fd, message);​
} 

Each request is read line-by-line. For VIEW, the server reads the entire chat file and 
sends it back to the client. For POST, it appends the new message, which includes 
the client’s local timestamp, user ID, and text content. 

void HandlePost(int fd, const std::string& msg)​
{​
    std::ofstream file("chat.txt", std::ios::app);​
    file << msg << std::endl;​
    file.close();​
    SendLine(fd, "OK");​
} 

 

The HandlePost() function appends the message to the shared file and confirms 
success by sending OK. 

Although multiple clients can read simultaneously, only one client performs a POST 
at a time — enforced by the DME middleware running on each client. 



Client (ClientMain.cpp) 
Each client provides a command-line interface supporting view, post "<text>", and 
quit. 

while (true)​
{​
    std::string cmd;​
    std::getline(std::cin, cmd);​
​
    if (cmd == "view")​
        ViewChat();​
    else if (cmd.rfind("post", 0) == 0)​
        PostMessage(cmd.substr(5));​
    else if (cmd == "quit")​
        break;​
} 

The CLI continuously accepts commands from the user. For view, it connects to the 
server and displays the shared content. For post, it coordinates with the DME 
middleware before sending the message. 

The view operation directly fetches chat contents from the server: 

void ViewChat()​
{​
    int fd = TcpConnectHostPort("server", 7000);​
    SendLine(fd, "VIEW");​
    std::string line;​
    while (RecvLine(fd, line))​
        std::cout << line << std::endl;​
} 

The client connects to the server and issues VIEW. The server responds with the 
entire chat file, which is printed line-by-line. This command requires no mutual 
exclusion — multiple clients can perform it simultaneously. 

For post, mutual exclusion is enforced: 

 

void PostMessage(const std::string& text)​



{​
    dme.RequestCS(); // Distributed Mutual Exclusion​
    int fd = TcpConnectHostPort("server", 7000);​
    std::string msg = GetLocalTime() + " " + clientId + ": " + text;​
    SendLine(fd, "POST " + msg);​
    RecvLine(fd, line); // Wait for OK​
    dme.ReleaseCS();​
} 

Before sending the message, the client calls RequestCS() to enter its critical section. 

Only after receiving permission from the DME does it send POST to the server. 
Once the message is appended successfully, the client calls ReleaseCS() to allow 
others to post. 

DME Middleware (DME.cpp) 
The Ricart–Agrawala algorithm ensures that only one client can access the shared 
resource at a time. Each client exchanges REQUEST, REPLY, and RELEASE messages 
with its peer. 

void DME::RequestCS()​
{​
    state = REQUESTING;​
    timestamp = LamportClock::increment();​
    SendRequest();​
    WaitForReplies();​
    state = HELD;​
} 

When a client needs to post, it sets its state to REQUESTING, increments its 
Lamport timestamp, and sends a REQUEST message to the other client. It waits for 
all REPLY messages before entering the critical section. 

When a request is received: 

void DME::OnRequest(int fromId, int ts)​
{​
    if (state == HELD || (state == REQUESTING && ​
        (ts > timestamp || (ts == timestamp && fromId > myId))))​
        deferQueue.push(fromId);​



    else​
        SendReply(fromId);​
} 

 

If the receiver is in its own critical section or has priority (lower timestamp), it 
defers the reply; otherwise, it immediately sends REPLY.​
This ensures that requests are granted strictly by Lamport ordering, maintaining 
distributed fairness. 

On exiting the critical section: 

void DME::ReleaseCS()​
{​
    state = RELEASED;​
    while (!deferQueue.empty())​
    {​
        SendReply(deferQueue.front());​
        deferQueue.pop();​
    }​
} 

Once a client finishes posting, it changes state to RELEASED and sends pending 
REPLY messages to any deferred peers, allowing the next writer to proceed. 

Network Utilities (NetUtils.cpp, NetUtils.hpp) 
All socket communication between nodes is handled by reusable helper functions. 
These utilities hide low-level socket details, making the application code cleaner 
and easier to maintain. They ensure reliable message exchange between distributed 
nodes using a consistent, line-based protocol. 

int TcpConnectHostPort(const std::string& host, int port)​
{​
    int sock = socket(AF_INET, SOCK_STREAM, 0);​
    connect(sock, (struct sockaddr*)&addr, sizeof(addr));​
    return sock;​
} 

The TcpConnectHostPort() function opens a TCP socket and connects to the 
specified host and port. It abstracts away all address resolution and connection 



logic, allowing higher-level modules like the client and DME to initiate network 
communication in a single call.  

 

Once a connection is established, data is sent using helper routines that ensure 
entire lines are transmitted correctly. 

void SendLine(int sock, const std::string& line)​
{​
    std::string msg = line + "\n";​
    send(sock, msg.c_str(), msg.size(), 0);​
} 

 

SendLine() takes care of framing outgoing messages by appending a newline 
character and transmitting the complete buffer. This guarantees that all messages 
exchanged between clients and the server follow a consistent line-oriented 
structure. Such framing makes message parsing simpler and reliable for both the 
collaboration application and the DME middleware. 

Helper Scripts 
To simplify setup, deployment, and execution of the distributed chatroom system, a 
set of lightweight Bash scripts were created. These helper scripts automate 
environment preparation, server startup, and client node execution, ensuring 
consistent runtime configuration across AWS EC2 instances. Each script echoes the 
command before execution to improve traceability and reproducibility during 
demonstration. 

setup.sh — Environment Bootstrap Script 
This script prepares the runtime environment on a fresh Ubuntu 22.04 or 24.04 
instance. It performs the following actions in sequence: 

●​ Updates the system’s package list using apt update. 
●​ Installs essential build tools, including the GNU compiler collection (gcc), 

g++, and make. 
●​ Installs snap and the tree utility for directory inspection. 
●​ Displays a completion message with the build instruction make clean && 

make. 



This ensures that all nodes (server and clients) have a consistent compilation 
environment prior to building the project binaries. 

run_server.sh — Server Launch Script 
This script starts the central chat server that manages the shared file and handles 
client requests. 

●​ It defines the execution command:​
 ./bin/server --bind 0.0.0.0:7000 --file ./chat.txt 

●​ The --bind parameter specifies that the server listens on all interfaces 
(0.0.0.0) at TCP port 7000. 

●​ The --file argument designates the persistent chat log file used to store all 
messages. 

●​ Before execution, the command is printed to the console for visibility. 

This script is typically executed on the designated AWS EC2 instance acting as the 
central server. 

start_client1.sh — Client Launch Script (Lucy) 
This script launches Client 1 (Lucy) with all required runtime arguments: 

●​ The --user flag assigns the username Lucy. 
●​ --self-id 1 and --peer-id 2 uniquely identify the node within the DME 

protocol. 
●​ The --listen parameter defines the client’s local port (8001). 
●​ The --peer parameter specifies the peer client’s IP address and port 

(172.31.27.84:8002). 
●​ The --server argument points to the central chat server (172.31.23.9:7000). 

The script echoes the constructed command before execution, allowing verification 
of the parameters. It then executes the binary using the same command string. 

start_client2.sh — Client Launch Script (Peer Node) 
Although not explicitly shown, a complementary script (start_client2.sh) would 
mirror the structure of start_client1.sh, swapping the identifiers and ports: 

●​ --self-id 2, --peer-id 1 
●​ --listen 0.0.0.0:8002, --peer <Client1-IP>:8001 

This symmetrical setup enables both clients to discover and establish the 
peer-to-peer DME channel for distributed coordination. 



AWS Cloud Environment Setup 
The distributed chatroom system was deployed entirely on the AWS Cloud platform 
using three Ubuntu 24.04 LTS (t3.micro) EC2 instances within the same AWS region 
(eu-west-2). This ensured low-latency communication between nodes and 
consistent performance during distributed mutual exclusion testing. 

EC2 Instance Configuration 
Three virtual machines were provisioned to represent one server and two client 
nodes: 

●​ chatroom-server – Hosts the shared file and handles all view and post 
requests. 

●​ chatroom-client1 – First participant node executing the DME protocol. 
●​ chatroom-client2 – Second participant node executing the DME protocol. 

All instances were launched in the same VPC and subnet, allowing full intra-node 
communication through private IP addressing. The default instance type t3.micro 
was sufficient to handle socket communication, message exchanges, and file 
operations. 

 

Security Group Configuration 
A dedicated security group (chatroom-sg) was created to permit network access 
across the required application ports. The following inbound rules were defined: 

1.​ Go to your AWS EC2 Dashboard. 
2.​ In the left sidebar, click Security Groups. 
3.​ Click Create security group. 

○​ Name: chatroom-sg 
○​ Description: Chatroom project security group 

4.​ In Inbound rules, add the following: 



 

You don’t need to edit outbound rules — AWS allows all outbound traffic by default. 
Here is a screenshot from the security group that I created for this: 

 

Outbound rules were left at their AWS defaults, permitting all outgoing traffic. 
Once created, the same security group was attached to all three instances via the 
EC2 console using Actions → Security → Change security groups → chatroom-sg → 
Save. 

SSH Connectivity 
Each node was accessed through SSH using a pre-generated AWS key pair. Example 
connections included: 

ssh -i /home/vbhadra/Downloads/CUDA-Assignment-Key-Pair.pem 

ubuntu@18.170.221.136   # Server  ​
ssh -i /home/vbhadra/Downloads/CUDA-Assignment-Key-Pair.pem 

ubuntu@35.179.154.246   # Client 1  ​
ssh -i /home/vbhadra/Downloads/CUDA-Assignment-Key-Pair.pem 



ubuntu@18.171.207.58    # Client 2   

All terminals remained open concurrently to observe synchronised execution and 
message ordering across the three nodes. 

Repository Setup and Environment Preparation 
Within each EC2 instance, the project repository was cloned, and the build 
environment was prepared using the automated setup script: 

git clone https://github.com/vivekbhadra/chatroom.git​
cd chatroom​
./setup.sh 

The setup script performed package updates and installed required build utilities 
(make, build-essential, and tree). Upon completion, each instance displayed the 
message “Setup complete — You can now run: make clean && make”. 

Compilation and Verification 
Following setup, the codebase was compiled using: 

make clean && make 

Compiled executables were generated inside the bin/ directory. This step was 
repeated independently on the server, client1, and client2 nodes to ensure each had 
a locally built binary set. 

 



Test Cases 
Based on the problem statement provided in the assignment, we developed a series 
of test cases to ensure that all specified requirements were correctly implemented 
and validated: 

Test 
Case 
No. 

Test Case Scenario 

1 Client Initialisation Synchronisation and Peer-Wait Verification 

2 Verify if one client dies the other fails to enter Critical Section 

3 Shared File Maintained by Server Node 

4 Server Recovery: Verify Automatic Recreation of the Chat Database if 
Deleted 

5 Text-Based UI Supporting view and post 

6 Client-Side Timestamp and Identification 

7 Simple Append Semantics for post 

8 Verification of Ricart–Agrawala Critical-Section Entry Criteria  

9 Verification of Lamport Timestamp Ordering in Distributed Mutual 
Exclusion 

10 Exclusive post Access Using Distributed Mutual Exclusion 

11 Server-Side Handling 

12 Concurrent view Operation 

 



Test Case 1 – Client Initialisation 
Synchronisation and Peer-Wait Verification 

Objective 

The purpose of this test is to verify that a client node does not proceed to its 
interactive user interface until its peer node is online and ready to establish a TCP 
connection. 

This ensures that both distributed clients achieve proper synchronisation before 
exchanging Ricart–Agrawala control messages, thus avoiding premature 
communication attempts or inconsistent initial states within the distributed mutual 
exclusion protocol. 

Action 

1.​ Started the server node using the command: 

           ./start_server.sh 

2.​ Launch the client 2 using the script as below:  

     ./start_client2.sh 

3.​ Launch client 1 a little later 

     ./start_client1.sh 

4.​ Observed Client 2 logs to confirm repeated connection attempts every 2 
seconds. Compared timestamps from both clients to verify that Client 1 
started later but was immediately accepted once available.  

Log Evidence 
Client 2 (Started First – Waiting for Peer) 

ubuntu@ip-172-31-27-84:~/chatroom$ ./start_client2.sh ​
Executing: ./bin/client --user "Joel" --self-id 2 --peer-id 1 

--listen 0.0.0.0:8002 --peer 172.31.22.222:8001 --server 

172.31.23.9:7000​
[2025-11-01 08:14:12] [NET] TcpListen() called with 

hostPort=0.0.0.0:8002​



[2025-11-01 08:14:12] [NET] SplitHostPort(): host=0.0.0.0, port=8002​
[2025-11-01 08:14:12] [NET] Creating socket: family=2, socktype=1, 

protocol=6​
[2025-11-01 08:14:12] [NET] Attempting bind() and listen() on socket 

fd=3​
[2025-11-01 08:14:12] [NET] TcpListen(): Successfully bound and 

listening on fd=3​
[2025-11-01 08:14:12] [NET] Attempting connect()​
[2025-11-01 08:14:12] [CLIENT] Peer not ready, retrying in 2s... 

(attempt 1)​
[2025-11-01 08:14:14] [NET] Attempting connect()​
[2025-11-01 08:14:14] [CLIENT] Peer not ready, retrying in 2s... 

(attempt 2)​
[2025-11-01 08:14:16] [NET] Attempting connect()​
[2025-11-01 08:14:16] [CLIENT] Peer not ready, retrying in 2s... 

(attempt 3)​
[2025-11-01 08:14:18] [NET] Attempting connect()​
[2025-11-01 08:14:18] [CLIENT] Peer not ready, retrying in 2s... 

(attempt 4)​
[2025-11-01 08:14:20] [NET] Attempting connect()​
[2025-11-01 08:14:20] [CLIENT] Peer not ready, retrying in 2s... 

(attempt 5)​
[2025-11-01 08:14:22] [NET] Attempting connect()​
[2025-11-01 08:14:22] [CLIENT] Peer not ready, retrying in 2s... 

(attempt 6)​
[2025-11-01 08:14:24] [NET] Attempting connect()​
[2025-11-01 08:14:24] [NET] TcpConnect(): successfully connected​
[2025-11-01 08:14:24] [CLIENT] Connected to peer 172.31.22.222:8001 

after 6 attempts.​
[2025-11-01 08:14:24] [CLIENT] Chat Room -- DC Assignment II​
[2025-11-01 08:14:24] [CLIENT] User: Joel (self=2, peer=1)​
[2025-11-01 08:14:24] [CLIENT] Commands: view | post "text" | quit​
>  

Client 1 (Started Later – Accepting Connection) 

ubuntu@ip-172-31-22-222:~/chatroom$ ./start_client1.sh ​
Executing: ./bin/client --user Lucy --self-id 1 --peer-id 2 --listen 

0.0.0.0:8001 --peer 172.31.27.84:8002 --server 172.31.23.9:7000​
[2025-11-01 08:14:23] [NET] TcpListen() called with 



hostPort=0.0.0.0:8001​
[2025-11-01 08:14:23] [NET] SplitHostPort(): host=0.0.0.0, port=8001​
[2025-11-01 08:14:23] [NET] Creating socket: family=2, socktype=1, 

protocol=6​
[2025-11-01 08:14:23] [NET] Attempting bind() and listen() on socket 

fd=3​
[2025-11-01 08:14:23] [NET] TcpListen(): Successfully bound and 

listening on fd=3​
[2025-11-01 08:14:23] [NET] Attempting connect()​
[2025-11-01 08:14:23] [NET] TcpConnect(): successfully connected​
[2025-11-01 08:14:23] [CLIENT] Connected to peer 172.31.27.84:8002 

after 0 attempts.​
[2025-11-01 08:14:23] [CLIENT] Chat Room -- DC Assignment II​
[2025-11-01 08:14:23] [CLIENT] User: Lucy (self=1, peer=2)​
[2025-11-01 08:14:23] [CLIENT] Commands: view | post "text" | quit​
>  

Observation 
The timestamp sequence clearly demonstrates that Client 2 began execution at 
08:14:12, while Client 1 started at 08:14:23, roughly 11 seconds later. 

During this interval, Client 2 continuously attempted to connect every 2 seconds 
(08:14:12, 08:14:14, 08:14:16, 08:14:18, 08:14:20, 08:14:22) without success. 

[2025-11-01 08:14:14] [NET] Attempting connect()​
[2025-11-01 08:14:14] [CLIENT] Peer not ready, retrying in 2s...  

 

As soon as Client 1 opened its listening socket at 08:14:23, Client 2’s next attempt at 
08:14:24 succeeded immediately. 

[2025-11-01 08:14:24] [NET] TcpConnect(): successfully connected 

 

Both clients then transitioned into the chat interface, confirming that the 
connection establishment logic correctly enforces peer-availability synchronisation 
before presenting the user prompt. 

This behaviour validates the system’s startup resilience and ensures that no client 
can begin distributed mutual exclusion operations (such as REQUEST, REPLY, or 
RELEASE) until both nodes are fully reachable. 



Screenshots 
Client 2 

 

Client 1  

 

Conclusion 

The test successfully confirmed that the client synchronisation mechanism 
operates as intended. A client node waits for its peer to become available before 
entering the interactive interface, ensuring both clients establish mutual 
connectivity prior to exchanging Ricart–Agrawala control messages. The observed 
logs and timestamps verify that the retry logic, connection handling, and 
peer-availability checks function reliably, thereby maintaining consistent initial 
states across the distributed system during startup. 

Test Case 2 – Verify if one client dies the other 
fails to enter Critical Section 



Objective 
To verify that if one of the participating clients in the distributed chat system 
unexpectedly terminates, the remaining active client cannot acquire the distributed 
lock for a post operation.  

This test validates that the Ricart–Agrawala Distributed Mutual Exclusion (DME) 
protocol correctly detects peer unresponsiveness and prevents any unsynchronised 
file updates to the shared chat database. 

Action 
1.​ Began with the server running normally using: 

./start_server.sh 

2.​ Both clients (Lucy = Client 1, Joel = Client 2) successfully connected. 
3.​ Simulating Peer Failure: On Client 2 (Joel), simulated a crash by manually 

terminating the process: 

    Ctrl + C 

          This abruptly disconnected Client 2 from the distributed system. 

4.​ Switched to Client 1 (Lucy) and attempted to execute a post command while 
the peer was offline:  

    >post "Let me check if Joel is online..." 

5.​ Observed the DME module’s response to confirm whether the system 
correctly timed out while waiting for a REPLY from the now-dead peer. 

6.​ Verification 
●​ Examined Client 1 logs to confirm repeated REQUEST messages 

followed by timeout and lock-acquisition failure. 
●​ Confirmed from server logs that no new post was appended, proving 

the write never proceeded. 

Log Evidence 

Client 1 (Lucy – Attempting Post After Client 2 Terminated): 

> post "Let me check if Joel is online..."​
[2025-11-01 08:30:33] [NET][SEND] REQUEST 1 1​
[2025-11-01 08:30:33] [DME][RA] Sent message: REQUEST 1 1​



[2025-11-01 08:30:33] [DME][RA] REQUEST sent to peer ID: 2 request 

ID: 1​
[2025-11-01 08:30:43] [DME][RA] TIMEOUT waiting for REPLY from peer 2​
[2025-11-01 08:30:43] [CLIENT] Could not acquire lock (peer 

unresponsive) 

Client 2 (Joel – Before Termination): 

[2025-11-01 08:30:00] [CLIENT] 01 Nov 08:11 AM Lucy: "I am going to 

ping Joel just for fun"​
[2025-11-01 08:30:00] [CLIENT] ​
> ^C 

Observation 
At 08:30:00, Client 2 was active and receiving messages.​
 It was then manually terminated using Ctrl + C, effectively removing it from the 
peer network. 

At 08:30:33, Client 1 attempted a REQUEST for critical-section entry to perform a 
post. The DME thread waited for a REPLY from the peer but received none. After 10 
seconds (ending at 08:30:43), the timeout triggered, and Client 1 logged: “Could not 
acquire lock (peer unresponsive)”.   

The server did not record any new POST activity, proving that the mutual exclusion 
mechanism safely blocked uncoordinated access when a peer was offline. 

 



Screenshots 
Server  

 

Client 2 (Killed) 

 

Client 1 (Fails to enter critical section) 

 

Conclusion 

The test confirms that the system detects peer failure and safely halts write 
operations. Client 1 did not obtain the lock and no file update was performed, 



demonstrating that the Ricart–Agrawala algorithm correctly enforces mutual 
exclusion even under fault conditions. 

The timeout mechanism ensures system consistency and prevents partial or 
unacknowledged writes to the shared file. 

Test Case 3 – Shared File Maintained by Server 
Node 

Objective 

To verify that the shared chat file (chat.txt) is maintained exclusively by the server 
node, and all clients access it remotely through the server using TCP connections. 

This confirms that only the server stores and manages the file, ensuring a single, 
authoritative copy of the shared state. 

Action 

5.​ Started the server node using the command: 

           ./start_server.sh 

6.​ Launched Client 1 (Lucy) and Client 2 (Joel) on two separate EC2 instances 
with the following commands: 

           ./start_client1.sh 

           ./start_client2.sh 

7.​ Verified that both clients connected successfully to the server’s IP 
(172.31.23.9) and used its VIEW and POST APIs for all file operations. 

8.​ Checked that no chat.txt file existed locally on either client node, confirming 
that file management occurs solely at the server. 

Log Evidence 
Server Log 

[SERVER] Starting on 0.0.0.0:7000 using file: ./chat.txt  ​
[SERVER] VIEW request received  ​
[SERVER] POST appended: 31 Oct 06:07 PM Lucy: "I am Lucy"​



[SERVER] POST appended: 31 Oct 06:07 PM Joel: "I am Joel" 

Client 1 Log (Lucy) 

[CLIENT] Connected to server 172.31.23.9:7000  ​
[CLIENT] Executed post "I am Lucy"​
[CLIENT] (posted) 

Client 2 Log (Joel) 

[CLIENT] Connected to server 172.31.23.9:7000  ​
[CLIENT] Executed post "I am Joel"​
[CLIENT] (posted) 

No client maintains a local copy, satisfying the centralised-storage requirement. 
The following are the log traces on server console: 

[2025-10-31 18:05:31] [SERVER] Starting on 0.0.0.0:7000 using file: 

./chat.txt​
[2025-10-31 18:07:03] [SERVER] Received line: "POST 31 Oct 06:07 PM 

Lucy: "I am Lucy""​
[2025-10-31 18:07:03] [SERVER] POST appended: 31 Oct 06:07 PM Lucy: 

"I am Lucy"​
[2025-10-31 18:07:04] [SERVER] Received line: "POST 31 Oct 06:07 PM 

Joel: "I am Joel""​
[2025-10-31 18:07:04] [SERVER] POST appended: 31 Oct 06:07 PM Joel: 

"I am Joel"​
[2025-10-31 18:07:54] [SERVER] Received line: "POST 31 Oct 06:07 PM 

Lucy: "Nice Meeting you Joel""​
[2025-10-31 18:07:55] [SERVER] Received line: "POST 31 Oct 06:07 PM 

Joel: "Nice meeting you, Lucy""​
[2025-10-31 18:08:06] [SERVER] Received line: "VIEW"​
[2025-10-31 18:08:06] [SERVER] VIEW request served. File size: 350 

bytes 

We can see the following from the log traces: 

●​ The server successfully binds to port 7000 and listens for TCP connections. 
●​ Each POST request from either client results in an append to the shared file 

chat.txt.  
●​ The server’s logs show both clients’ messages being written sequentially to 

the same file.  



●​ The final VIEW confirms that the file contains all updates, proving that the 
shared file is maintained centrally. 

Observation 
Both clients successfully executed their POST commands, and all messages 
appeared in the server-side file (chat.txt).​
No file creation or local storage occurred on either client node, proving that all read 
and write requests were routed exclusively to the server. 

Screenshots 
Server Screenshot 

 

The server starts on port 7000, successfully binds to 0.0.0.0:7000, and listens for 
incoming TCP connections.  

Each POST operation received from either client is appended to chat.txt. 

At 18:08:06, a VIEW request is processed, confirming that all messages are being 
served from the central file. 

Client 1 Screenshot 



 

Observations 
Lucy first posts “I am Lucy”.​
The client issues a REQUEST 1 1 message to Joel (peer 2) and receives a REPLY 2 
grant.​
After permission is granted, it enters the critical section, connects to the server 
(172.31.23.9:7000), sends the POST request, and releases the lock with RELEASE 1.​
The log shows both distributed-mutual-exclusion messages (REQUEST, REPLY, 



RELEASE) and the subsequent server interaction, confirming that the write is 
serialised through DME. 

Lucy’s later VIEW command retrieves the aggregated chat file from the server, 
displaying messages from both participants.​
This verifies that the client reads data only from the shared server file. 

Log evidences  

[2025-10-31 18:06:33] [CLIENT] Connected to peer 172.31.27.84:8002 

after 1 attempts.​
[2025-10-31 18:07:03] [NET][SEND] REQUEST 1 1​
[2025-10-31 18:07:03] [CLIENT 1] peer->me: REPLY 2​
[2025-10-31 18:07:03] [DME][RA] ENTER critical section (permission 

received)​
[2025-10-31 18:07:03] [NET][SEND] POST 31 Oct 06:07 PM Lucy: "I am 

Lucy"​
[2025-10-31 18:07:03] [CLIENT] (posted)​
[2025-10-31 18:07:03] [NET][SEND] RELEASE 1​
[2025-10-31 18:07:04] [CLIENT 1] peer->me: REQUEST 3 2​
[2025-10-31 18:07:04] [NET][SEND] REPLY 1​
[2025-10-31 18:07:54] [NET][SEND] REQUEST 5 1​
[2025-10-31 18:07:54] [CLIENT 1] peer->me: REPLY 2​
[2025-10-31 18:07:54] [DME][RA] ENTER critical section (permission 

received)​
[2025-10-31 18:07:54] [NET][SEND] POST 31 Oct 06:07 PM Lucy: "Nice 

Meeting you Joel"​
[2025-10-31 18:07:54] [CLIENT] (posted)​
[2025-10-31 18:07:54] [NET][SEND] RELEASE 1​
[2025-10-31 18:08:06] [NET][SEND] VIEW 

We can see the following from the log traces: 

●​ Client 1 (Lucy) requests permission to enter the critical section by sending 
REQUEST 1 1. 

●​ After receiving REPLY 2 from the peer (Joel), it enters the critical section and 
posts "I am Lucy" to the server. 

●​ The RELEASE 1 message signals exit from the critical section. 
●​ Later, Lucy issues another REQUEST for the message “Nice Meeting you 

Joel”, again waits for REPLY, and posts successfully. 
●​ The final VIEW retrieves all chat entries from the server’s shared file, 

confirming correct access behaviour. 



Client 2 Screenshot 

 

Observations  

Joel responds to Lucy’s initial REQUEST by sending a REPLY, then makes his own 
POST "I am Joel" after acquiring permission from Lucy. 



The sequence of REQUEST, REPLY, and RELEASE messages demonstrates that 
mutual exclusion is maintained before any write to chat.txt. 

Joel’s later post “Nice meeting you, Lucy” is also granted permission by Lucy before 
contacting the server. 

Each successful POST is confirmed by (posted) in the logs, aligning with the server’s 
append events. 

[2025-10-31 18:06:31] [CLIENT] Connected to peer 172.31.22.222:8001 

after 0 attempts.​
[2025-10-31 18:07:03] [CLIENT 2] peer->me: REQUEST 1 1​
[2025-10-31 18:07:03] [NET][SEND] REPLY 2​
[2025-10-31 18:07:04] [NET][SEND] REQUEST 3 2​
[2025-10-31 18:07:04] [CLIENT 2] peer->me: REPLY 1​
[2025-10-31 18:07:04] [DME][RA] ENTER critical section (permission 

received)​
[2025-10-31 18:07:04] [NET][SEND] POST 31 Oct 06:07 PM Joel: "I am 

Joel"​
[2025-10-31 18:07:04] [CLIENT] (posted)​
[2025-10-31 18:07:04] [NET][SEND] RELEASE 2​
[2025-10-31 18:07:54] [CLIENT 2] peer->me: REQUEST 5 1​
[2025-10-31 18:07:54] [NET][SEND] REPLY 2​
[2025-10-31 18:07:55] [NET][SEND] REQUEST 7 2​
[2025-10-31 18:07:55] [CLIENT 2] peer->me: REPLY 1​
[2025-10-31 18:07:55] [DME][RA] ENTER critical section (permission 

received)​
[2025-10-31 18:07:55] [NET][SEND] POST 31 Oct 06:07 PM Joel: "Nice 

meeting you, Lucy"​
[2025-10-31 18:07:55] [CLIENT] (posted)​
[2025-10-31 18:07:55] [NET][SEND] RELEASE 2 

We can see the following from the log traces: 

●​ Joel initially responds to Lucy’s REQUEST with REPLY 2, granting permission. 
●​ After Lucy exits the critical section (RELEASE 1), Joel sends his own REQUEST 

3 2, waits for REPLY 1, then posts his message "I am Joel". 
●​ The alternating sequence of REQUEST, REPLY, and RELEASE ensures strict 

serialisation of file writes. 
●​ Later, Joel performs another post "Nice meeting you, Lucy", again waiting for 

permission before sending to the server. 
●​ This confirms correct mutual exclusion and remote file access. 



Conclusion 
The test conclusively verified that the shared chat file (chat.txt) is maintained 
exclusively by the server node, with all read and write operations routed through it 
over TCP. Both clients interacted with the central file only after obtaining 
permission via the Ricart–Agrawala protocol, ensuring strict mutual exclusion and 
serialised access. Log traces confirmed that no local copies were created on client 
machines and that every POST and VIEW request was processed solely by the 
server. This demonstrates correct implementation of centralised state 
management, mutual exclusion enforcement, and reliable synchronisation between 
distributed clients and the server. 

 



Test Case 4 – Server Recovery: Verify Automatic 
Recreation of the Chat Database if Deleted 

Objective 
To verify that the server can automatically recreate the shared chat database file 
(chat.txt) if it is missing or deleted before the server starts.  

This test confirms the system’s ability to self-recover and ensure that the server 
always has a valid, writable file for handling incoming VIEW and POST requests. 

Action 
1.​ Stopped any previously running server instance using: Ctrl+C 
2.​ Verified the presence of the chat file: 

ubuntu@ip-172-31-23-9:~/chatroom$ ls -la chat.txt ​
-rw-rw-r-- 1 ubuntu ubuntu 448 Nov  1 08:11 chat.txt 

3.​ Simulating File Deletion: Manually deleted the existing chat database to 
simulate data loss. 

4.​ Server Restart and Verification: Restarted the server. Observed the server log 
to confirm detection of the missing file and its automatic recreation. 

5.​ Functional Test After Recovery: Launched both Client 1 (Lucy) and Client 2 
(Joel).  

6.​ Executed a post command from Client 1. 
7.​ Verified that the server accepted the message and recreated a new chat.txt 

file containing the post. 

Log Evidence 

Server Log 

[2025-11-01 09:20:12] [SERVER] Starting on 0.0.0.0:7000 using file: 

./chat.txt​
[2025-11-01 09:20:12] [SERVER] chat.txt not found -- creating new 

file​
[2025-11-01 09:20:18] [SERVER] Connection accepted​
[2025-11-01 09:20:18] [SERVER] Received line: "POST 01 Nov 09:20 AM 

Lucy: Testing server file recovery"​
[2025-11-01 09:20:18] [SERVER] POST appended: 01 Nov 09:20 AM Lucy: 



Testing server file recovery 

Client 1 (Lucy) Log 

> post "Testing if Joel is online..."​
[2025-11-01 09:21:41] [NET][SEND] REQUEST 1 1​
​
[2025-11-01 09:21:41] [DME][RA] Sent message: REQUEST 1 1​
​
[2025-11-01 09:21:41] [DME][RA] REQUEST sent to peer ID: 2 request 

ID:1​
[2025-11-01 09:21:41] [CLIENT 1] peer->me: REPLY 2​
[2025-11-01 09:21:41] [DME] Message Received : REPLY 2​
​
[2025-11-01 09:21:41] [DME] Extracted Type: REPLY​
[2025-11-01 09:21:41] [DME][RA] Received REPLY (permission granted) 

from peer 2​
[2025-11-01 09:21:41] [DME][RA] ENTER critical section (permission 

received)​
[2025-11-01 09:21:41] [NET] TcpConnectHostPort() input: 

172.31.23.9:7000​
[2025-11-01 09:21:41] [NET] SplitHostPort(): host=172.31.23.9, 

port=7000​
[2025-11-01 09:21:41] [NET] Attempting connect()​
[2025-11-01 09:21:41] [NET] TcpConnect(): successfully connected​
[2025-11-01 09:21:41] [NET][SEND] POST 01 Nov 09:21 AM Lucy: "Testing 

if Joel is online..."​
​
[2025-11-01 09:21:41] [NET] SendLine(): sent 58 bytes, result=0​
[2025-11-01 09:21:41] [CLIENT] (posted)​
[2025-11-01 09:21:41] [NET][SEND] RELEASE 1​
​
[2025-11-01 09:21:41] [DME][RA] Sent message: RELEASE 1​
​
[2025-11-01 09:21:41] [DME][RA] RELEASE sent -- leaving critical 

section 

Client 2 (Joel) Log 



> view​
[2025-11-01 09:21:49] [NET] TcpConnectHostPort() input: 

172.31.23.9:7000​
[2025-11-01 09:21:49] [NET] TcpConnect(): successfully connected​
[2025-11-01 09:21:49] [NET][SEND] VIEW​
[2025-11-01 09:21:49] [CLIENT] 01 Nov 09:21 AM Lucy: "Testing if Joel 

is online..." 

File System Verification 

$ ls -l chat.txt​
-rw-r--r-- 1 ubuntu ubuntu 120 Nov  1 09:20 chat.txt 

Observation 
At 09:20:12, the server started and immediately detected the absence of chat.txt, 
logging “chat.txt not found — creating new file”.​
 By 09:20:18, the server had accepted a connection from Client 1 and successfully 
appended a new message to the recreated file. 

Subsequently, at 09:21:49, both Client 1 and Client 2 executed VIEW commands 
concurrently, and both retrieved the same message entry from the newly generated 
database. 

The sequence of timestamps proves that the server autonomously restored its 
missing data file and continued servicing requests without downtime or manual 
intervention. 

Screenshot 

Server 



 

Client 1 

 

Client 2 



 

Conclusion 
The test successfully demonstrated the server’s ability to autonomously detect the 
absence of its database file and recreate it during startup. Upon deletion of chat.txt, 
the server generated a new file and resumed normal operation without manual 
intervention or service interruption. Both clients were able to post and view 
messages through the newly created file, confirming that the recovery mechanism 
preserves system availability and ensures continuous consistency of the shared 
chat database. This validates the robustness and self-healing design of the server 
component in handling data loss scenarios. 

 



Test Case 5 – Text-Based UI Supporting view and 
post 

Objective 

Verify that the distributed chatroom application provides a simple, text-based 
interface supporting the two shell commands: 

●​ view – to retrieve and display the shared chat file from the server 
●​ post "<text>" – to send a new message to the server and append it to the 

shared file 

Action 

Run the client interface and issue the following commands sequentially: 

●​ view 
●​ post "Hello from Client 1" 

 

Log Evidence 
[2025-10-31 18:56:15] [NET][SEND] REQUEST 9 1​
[2025-10-31 18:56:15] [DME][RA] REQUEST sent to peer ID: 2 request 

ID:9​
[2025-10-31 18:56:15] [CLIENT 1] peer->me: REPLY 2​
[2025-10-31 18:56:15] [DME][RA] ENTER critical section (permission 

received)​
[2025-10-31 18:56:15] [NET] TcpConnectHostPort() input: 

172.31.23.9:7000​
[2025-10-31 18:56:15] [NET][SEND] POST 31 Oct 06:56 PM Lucy: "Hello 

Joel"​
[2025-10-31 18:56:15] [CLIENT] (posted)​
[2025-10-31 18:56:15] [NET][SEND] RELEASE 1​
[2025-10-31 18:56:15] [DME][RA] RELEASE sent -- leaving critical 

section 

Client 2 

[2025-10-31 18:56:29] [NET] TcpConnectHostPort() input: 



172.31.23.9:7000​
[2025-10-31 18:56:29] [NET] SplitHostPort(): host=172.31.23.9, 

port=7000​
[2025-10-31 18:56:29] [NET] Attempting connect()​
[2025-10-31 18:56:29] [NET] TcpConnect(): successfully connected​
[2025-10-31 18:56:29] [NET][SEND] VIEW​
[2025-10-31 18:56:29] [NET] SendLine(): sent 5 bytes, result=0​
[2025-10-31 18:56:29] [CLIENT] 26 Oct 03:14 PM Joel: "HELLO"​
[2025-10-31 18:56:29] [CLIENT] 26 Oct 04:08 PM Joel: "Hi there"​
[2025-10-31 18:56:29] [CLIENT] 26 Oct 04:11 PM Lucy: "Hello from 

Client 1 - test DME"​
[2025-10-31 18:56:29] [CLIENT] 30 Oct 06:32 AM Lucy: "Hello"​
[2025-10-31 18:56:29] [CLIENT] 30 Oct 06:32 AM Joel: "Hi"​
[2025-10-31 18:56:29] [CLIENT] 31 Oct 06:07 PM Lucy: "I am Lucy"​
[2025-10-31 18:56:29] [CLIENT] 31 Oct 06:07 PM Joel: "I am Joel"​
[2025-10-31 18:56:29] [CLIENT] 31 Oct 06:07 PM Lucy: "Nice Meeting 

you Joel"​
[2025-10-31 18:56:29] [CLIENT] 31 Oct 06:07 PM Joel: "Nice meeting 

you, Lucy"​
[2025-10-31 18:56:29] [CLIENT] 31 Oct 06:56 PM Lucy: "Hello Joel" 

Observations  
●​ Lucy issues the post command through the text-based UI. 
●​ The client first sends a REQUEST message to peer 2 (Joel) to acquire 

permission for entering the critical section. 
●​ Upon receiving REPLY 2, the client logs “ENTER critical section (permission 

received)” — confirming mutual exclusion is achieved. 
●​ The POST command then connects to the server at 172.31.23.9:7000 and 

transmits the formatted message: 

     POST 31 Oct 06:56 PM Lucy: "Hello Joel" 

●​ The message is acknowledged as “(posted)” and the client releases its lock 
(RELEASE 1). 

●​ This confirms that the post operation was atomic and sequentially ordered 
via Ricart–Agrawala coordination. 

●​ Joel runs the view command, which sends a VIEW request to the central 
server (172.31.23.9:7000). 



●​ The logs confirm a successful TCP connection followed by transmission of 
the command:​
[NET][SEND] VIEW 

●​ The client then displays the complete shared chat history retrieved from the 
server’s file chat.txt. 

●​ The output includes all prior exchanges between Lucy and Joel — including 
the latest message​
"Hello Joel" posted by Lucy — verifying consistency and synchronisation 
between nodes. 

●​ The console output confirms that view provides a functional, intuitive 
interface for users to read all chat history maintained on the central server. 

Screenshots 
Client 1 

 

User action 

> post "Hello Joel" 

 



 

Conclusion 
The test confirmed that the distributed chat application provides a fully functional, 
text-based user interface supporting both view and post operations. The post 
command correctly invoked the Ricart–Agrawala coordination mechanism, 
ensuring that messages were transmitted to the server only after critical-section 
access was granted. The view command reliably fetched and displayed the 
consolidated chat history from the server’s shared file, demonstrating consistent 
synchronisation across clients. The observed logs and console outputs validate that 
the user interface is intuitive, responsive, and correctly integrated with the 
distributed mutual exclusion and centralised file management components. 

Test Case 6 – Client-Side Timestamp and 
Identification 



Objective 
To verify that every POST entry in the shared server file includes: 

1.​ The timestamp generated on the client at posting time. 
2.​ The client’s user name (or node ID). 
3.​ The message text as entered by the user. 

This confirms that the distributed system maintains end-to-end traceability of each 
message. 

Action 
1.​ Started the server node on 10.0.0.13 hosting the shared file chat.txt. 
2.​ Launched Client 1 (Lucy) and Client 2 (Joel) from two EC2 nodes. 
3.​ Each client executed a post command with distinct text messages. 
4.​ Observed the logs and inspected the server output. 

Log Evidence 
Client 1 

[2025-10-29 13:56:18] [NET][SEND] POST 29 Oct 01:56 PM Lucy: "Hello 

from Client-1"​
[2025-10-29 13:56:18] [CLIENT] (posted)​
[2025-10-29 13:56:18] [DME][RA] RELEASE sent -- leaving critical 

section 

Client 2 

[2025-10-29 13:56:40] [NET][SEND] POST 29 Oct 01:56 PM Joel: "Hello 

from Client 2"​
[2025-10-29 13:56:40] [CLIENT] (posted)​
[2025-10-29 13:56:40] [DME][RA] RELEASE sent -- leaving critical 

section 

Observation 
●​ The message includes both timestamp (29 Oct 01:56 PM) and the user name 

(Lucy). 
●​ Logs show that the post was issued after the critical-section permission was 

granted by the Ricart–Agrawala protocol. This timestamp is generated locally 
on the client machine before sending the message to the server. 



●​ The post from Joel is correctly timestamped (29 Oct 01:56 PM) and tagged 
with his user name. The message was sent immediately after receiving REPLY 
from peer node 1, ensuring serialised access. Confirms that each client 
maintains its own local timestamp generation mechanism before message 
dispatch. 

Screenshots 
Client 1 

 

Client 2​

 



Server  

 

Conclusion 

The distributed system correctly implements client-side timestamping and 
identification.​
 Every message includes: 

●​ A local timestamp (client time of posting) 
●​ The client’s username (unique ID) 
●​ The original message content 

Test Case 7 – Simple Append Semantics for post 

Objective 
Verify that each post command appends the new text to the shared file on the 
server, with no threaded replies or ordering requirements. 

Action 
Execute multiple post commands from different clients in sequence. 



Log Evidence  
[2025-10-30 13:50:33] [NET] TcpConnect(): successfully connected  ​
[2025-10-30 13:50:33] [NET][SEND] POST 30 Oct 01:50 PM Lucy: "message 

1 from client 1"  ​
[2025-10-30 13:50:33] [CLIENT] (posted)  ​
[2025-10-30 13:50:33] [DME][RA] RELEASE sent -- leaving critical 

section  ​
​
[2025-10-30 13:50:44] [DME][RA] REQUEST sent to peer ID: 2 request ID: 

7  ​
[2025-10-30 13:50:44] [DME][RA] ENTER critical section (permission 

received)  ​
[2025-10-30 13:50:44] [NET][SEND] POST 30 Oct 01:50 PM Lucy: "message 

2 from client 1"  ​
[2025-10-30 13:50:44] [CLIENT] (posted)  ​
[2025-10-30 13:50:44] [DME][RA] RELEASE sent -- leaving critical 

section 
 

Client 1 

[2025-10-30 13:50:56] [NET][SEND] POST 30 Oct 01:50 PM Lucy: "message 

3 from client 1"  ​
[2025-10-30 13:50:56] [CLIENT] (posted)  ​
[2025-10-30 13:50:56] [DME][RA] RELEASE sent -- leaving critical 

section  ​
​
[2025-10-30 13:51:07] [DME][RA] REQUEST sent to peer ID: 2 request 

ID:11  ​
[2025-10-30 13:51:07] [DME][RA] ENTER critical section (permission 

received)  ​
[2025-10-30 13:51:07] [NET][SEND] POST 30 Oct 01:51 PM Lucy: "message 

4 from client 1"  ​
[2025-10-30 13:51:07] [CLIENT] (posted)  ​
[2025-10-30 13:51:07] [DME][RA] RELEASE sent -- leaving critical 

section 



Observation 
●​ Lucy successfully performs two independent post operations within separate 

critical-section windows enforced by the Ricart–Agrawala DME protocol. 
●​ Each POST message is transmitted to the server once permission is obtained. 
●​ The [CLIENT] (posted) confirmation indicates that the server appended both 

entries to chat.txt. 
●​ The second post starts only after the previous RELEASE has been 

acknowledged, proving sequential append semantics. 
●​ No interleaving, overwriting, or reordering is observed; the server log (next 

screenshot) should show these entries appended one after another. 
●​ Client 1 issues two more POST commands (message 3 and message 4) in 

sequence. 
●​ Each post follows a complete Ricart–Agrawala critical-section cycle 

(REQUEST → REPLY → ENTER CS → RELEASE). 
●​ The timestamps show no overlap between posts — each is appended after 

the previous release. 
●​ The [CLIENT] (posted) confirmation after every POST indicates that the 

server successfully appended the message to chat.txt. 
●​ These four posts (messages 1–4) collectively demonstrate that the system 

implements simple append-only semantics, with no threading, overwriting, 
or reordering. 

●​ When the server’s log is reviewed, it should display four new entries 
corresponding exactly to the client’s submission order. 

●​ Joel (Client 2) executes four consecutive post commands immediately after 
Lucy’s posts, each following its own Ricart–Agrawala request–reply–release 
cycle. 

●​ Every POST event is isolated within a critical section, ensuring only one 
writer (either Lucy or Joel) accesses the shared file at any time. 

●​ The timestamps (13:51:40, 13:51:51, 13:52:01, 13:52:10) confirm strictly serialized, 
non-overlapping access. 

●​ After each message, a RELEASE follows, allowing the next client to proceed. 
●​ The [CLIENT] (posted) log consistently confirms successful delivery and 

server acknowledgment. 
●​ Since no reordering or hierarchical threading occurs, the shared chat.txt file 

maintains a pure append-only log, exactly as intended in the assignment 
objective. 

Screenshots 
Client 1 



 

 

Client 2 



 

 

Server 



 

 

Conclusion 
The distributed system satisfies Simple Append Semantics. Each client’s post 
command appends a new line to the server’s shared file (chat.txt) without any 



interleaving, overwriting, or misordering.​
This confirms that the server implements atomic append-only writes, while the 
DME layer ensures serialized access control.  



Test Case to Prove of DME working 

Test Case 8 – Verification of Ricart–Agrawala 
Critical-Section Entry Criteria  

Objective 
Confirm—via log inspection—that the Ricart–Agrawala (RA) protocol is followed 
exactly: a node issues REQUEST, receives REPLY before entering the critical section 
(CS), and broadcasts RELEASE on exit; the peer defers/permits correctly. 

Action  
1.​ Start Server:  
2.​ Start Client 2: ./start_client2.sh. Leave it at the prompt. 
3.​ Start client 1:  
4.​ On Client 1, at the prompt, issue a post "Testing if Joel is online..." (this causes 

RA REQUEST). 
5.​ Observe Client 2 logs responding to Lucy’s REQUEST and granting REPLY. 
6.​ Observe Client 1 logs showing REPLY receipt → CS entry → RELEASE on exit. 
7.​ Verify Client 2 logs receiving Lucy’s RELEASE and returning to normal state. 
8.​ Optionally issue a view from either client to confirm the write completed. 

Log Evidence  
Client 1 

> post "Testing if Joel is online..."​
[2025-11-01 09:21:41] [NET][SEND] REQUEST 1 1​
​
[2025-11-01 09:21:41] [DME][RA] Sent message: REQUEST 1 1​
​
[2025-11-01 09:21:41] [DME][RA] REQUEST sent to peer ID: 2 request 

ID:1​
[2025-11-01 09:21:41] [CLIENT 1] peer->me: REPLY 2​
[2025-11-01 09:21:41] [DME] Message Received : REPLY 2​
​
[2025-11-01 09:21:41] [DME] Extracted Type: REPLY​
[2025-11-01 09:21:41] [DME][RA] Received REPLY (permission granted) 

from peer 2​



[2025-11-01 09:21:41] [DME][RA] ENTER critical section (permission 

received)​
[2025-11-01 09:21:41] [NET] TcpConnectHostPort() input: 

172.31.23.9:7000​
[2025-11-01 09:21:41] [NET] SplitHostPort(): host=172.31.23.9, 

port=7000​
[2025-11-01 09:21:41] [NET] Attempting connect()​
[2025-11-01 09:21:41] [NET] TcpConnect(): successfully connected​
[2025-11-01 09:21:41] [NET][SEND] POST 01 Nov 09:21 AM Lucy: "Testing 

if Joel is online..."​
​
[2025-11-01 09:21:41] [NET] SendLine(): sent 58 bytes, result=0​
[2025-11-01 09:21:41] [CLIENT] (posted)​
[2025-11-01 09:21:41] [NET][SEND] RELEASE 1​
​
[2025-11-01 09:21:41] [DME][RA] Sent message: RELEASE 1​
​
[2025-11-01 09:21:41] [DME][RA] RELEASE sent -- leaving critical 

section​
>  

Observation 

Ricart–Agrawala Algorithm Recap 

The RA algorithm ensures mutual exclusion in a distributed system without a 
central coordinator.​
 Each node maintains a logical clock and communicates using three message types: 

1.​ REQUEST – sent by a process that wants to enter the critical section (CS).​
 It includes the process’s ID and Lamport timestamp. 

2.​ REPLY – sent by every other process granting permission to the requester. 
3.​ RELEASE – sent after leaving the CS, allowing waiting peers to proceed. 

A node may enter its CS only after receiving REPLY from all other nodes. 

Test Pass Criteria 

●​ A post operation does not enter CS until a REPLY is received. 
●​ The peer sends REPLY only after evaluating RA rules and acknowledges 

RELEASE after CS exit. 



●​ Log ordering shows REQUEST → REPLY → ENTER CS → RELEASE with 
consistent Lamport timestamps. 

Step-by-Step Breakdown from the Log 

Request Phase 

[2025-11-01 09:21:41] [NET][SEND] REQUEST 1 1​
[2025-11-01 09:21:41] [DME][RA] REQUEST sent to peer ID: 2 request 

ID:1 

●​ Lucy (Client 1) intends to execute a POST operation (write to the shared file). 
●​ She increments her Lamport clock and sends a REQUEST (1 1) message to 

Joel (Client 2). 
○​ First “1” → Lamport timestamp. 
○​ Second “1” → Lucy’s node ID. 

●​ This informs the peer that Lucy wants to enter the critical section. 

Permission Grant (Peer Reply) 

[2025-11-01 09:21:41] [CLIENT 1] peer->me: REPLY 2​
[2025-11-01 09:21:41] [DME][RA] Received REPLY (permission granted) 

from peer 2 

●​ Joel (Client 2) receives Lucy’s REQUEST, checks that he is not currently in or 
waiting for the CS, and sends back a REPLY. 

●​ Lucy receives this REPLY from node 2, meaning all peers have granted 
permission (since there are only two participants). 

●​ This satisfies the RA entry condition — she may now safely proceed to the 
critical section. 

Entering the Critical Section 

[2025-11-01 09:21:41] [DME][RA] ENTER critical section (permission 

received) 

●​ Lucy enters the CS — i.e. she now has exclusive access to perform the write 
(POST). 

●​ During this period, Joel will defer any new requests for CS access until Lucy 
sends RELEASE. 

Executing the Critical Section (POST) 



[2025-11-01 09:21:41] [NET][SEND] POST 01 Nov 09:21 AM Lucy: "Testing 

if Joel is online..."​
[2025-11-01 09:21:41] [CLIENT] (posted) 

●​ Within the CS, Lucy sends her message to the server. 
●​ The POST is successfully transmitted and acknowledged — the shared file 

(chat.txt) is updated. 
●​ At this point, Lucy still “holds” the CS lock. 

Releasing the Critical Section 

[2025-11-01 09:21:41] [NET][SEND] RELEASE 1​
[2025-11-01 09:21:41] [DME][RA] RELEASE sent -- leaving critical 

section 

●​ After completing the write, Lucy sends a RELEASE message to Joel. 
●​ This informs Joel that the critical section is now free — he may enter if he 

was waiting. 
●​ Lucy resets her internal state (m_inCs = false) and updates her Lamport 

clock. 

Screenshots 

Client 1 Screenshot (sufficient for this test case) 

 



Conclusion 

The log clearly demonstrates that the Ricart–Agrawala algorithm is fully 
preserved: 

●​ Client 1 initiated access with a properly timestamped REQUEST. 
●​ Client 2 evaluated and granted REPLY. 
●​ Client 1 entered, executed, and exited the critical section correctly, issuing a 

RELEASE to restore global availability. 

This confirms correct sequencing, fairness, and strict mutual exclusion — the 
core guarantees of Ricart–Agrawala. 

 



Test Case to Prove of DME working 

Test Case 9 – Verification of Lamport Timestamp 
Ordering in Distributed Mutual Exclusion 

Objective 
To verify that the Ricart–Agrawala (RA) implementation correctly maintains 
Lamport logical clock ordering between distributed nodes. 

The goal is to confirm that each peer updates its Lamport timestamp upon 
receiving a REQUEST message and uses it to make a deterministic and fair decision 
about granting access to the critical section (CS). 

This ensures that causality and event ordering are preserved across clients in the 
absence of a global clock. 

Action 

1.​ Start both clients and wait until they are mutually connected. 
2.​ From Client 1 (Lucy), issue the command: 

     post "Testing if Joel is online..." 

3.​ This triggers a Ricart–Agrawala REQUEST message containing Lucy’s 
Lamport timestamp. 

4.​ Observe Client 2 (Joel)’s logs as it receives the REQUEST, updates its Lamport 
clock, and sends a REPLY. 

5.​ Once Client 1 enters the critical section and completes its post, verify that 
Client 2’s logs show consistent Lamport timestamp progression.​
 

Log Evidence 
Client 2 (Sufficient for this Test Case)  

[2025-11-01 09:21:41] [CLIENT 2] peer->me: REQUEST 1 1​
[2025-11-01 09:21:41] [DME] Message Received : REQUEST 1 1​
[2025-11-01 09:21:41] [DME] Extracted Type: REQUEST​
[2025-11-01 09:21:41] [DME] Extracted timestamp from message: 1, 

extracted peer Node Id: 1​



[2025-11-01 09:21:41] [DME] Calculated Lamport timestamp to: 2​
[2025-11-01 09:21:41] [DME][IN] Received REQUEST for Critical Section 

from Node: 1 with Lamport ts=1)​
[2025-11-01 09:21:41] [DME] Current State - InCS: 0, Requesting: 0, 

ReqTs: 0​
[2025-11-01 09:21:41] [NET][SEND] REPLY 2​
[2025-11-01 09:21:41] [DME][RA] Sent message: REPLY 2​
[2025-11-01 09:21:41] [DME][RA][OUT] REQUEST from peer node 1 

(timestamp=1) accepted -- sent REPLY (permission granted) 

Observation  
 The log clearly demonstrates the Lamport timestamp propagation rule: 

●​ Client 2 receives Lucy’s REQUEST with timestamp 1, computes max(own_ts, 
received_ts) + 1, and updates its logical clock to 2. 

●​ The incremented Lamport timestamp ensures that Joel’s REPLY event 
happens after Lucy’s REQUEST event in logical order. 

●​ No clock regression occurs, maintaining global event ordering and satisfying 
causality conditions of the Ricart–Agrawala algorithm. 

Thus, the distributed system correctly preserves Lamport timestamp consistency, 
ensuring fairness, causal ordering, and deterministic access to the shared critical 
section. 

Screenshots  
Client 2 (conforming Lamport Timestamp increment)  

 



Conclusion 
The test confirmed that Lamport timestamps are correctly implemented and 
consistently maintained across distributed nodes within the Ricart–Agrawala 
framework. Each node accurately updates its logical clock upon receiving a 
REQUEST message, ensuring that all subsequent REPLY and critical-section events 
follow a strictly increasing timestamp order. This behaviour verifies that causality, 
fairness, and deterministic event ordering are preserved throughout the system, 
validating the correctness of the distributed mutual exclusion mechanism. 

 



Test Case to Prove of DME working 

Test Case 10 – Exclusive post Access Using 
Distributed Mutual Exclusion 

Objective 
Verify that only one client can hold write access to the shared file at a time. 

This mutual exclusion must be guaranteed through the Ricart–Agrawala 
Distributed Mutual Exclusion (DME) protocol. 

When both clients issue post commands concurrently, one must acquire permission 
first while the other waits for the RELEASE message before entering its own critical 
section. 

Action 
1.​ Start the server node (172.31.23.9) using: 

           ./start_server.sh 

2.​ Launch Client 1 (Lucy – 172.31.22.222) and Client 2 (Joel – 172.31.27.84) 
simultaneously. 

3.​ Both clients execute: 

            post "<message>" 

            at approximately the same time. 

4.​ Observe the timestamps and RA message exchange (REQUEST, REPLY, 
RELEASE) between the clients and the server logs confirming the serialized 
file writes. 

Log Evidence 
[2025-10-30 06:32:48] [NET][SEND] REQUEST 1 1​
[2025-10-30 06:32:48] [CLIENT 1] peer->me: REPLY 2​
[2025-10-30 06:32:48] [DME][RA] ENTER critical section (permission 

received)​
[2025-10-30 06:32:48] [NET][SEND] POST 30 Oct 06:32 AM Lucy: "Hello"​
[2025-10-30 06:32:48] [CLIENT] (posted)​



[2025-10-30 06:32:48] [NET][SEND] RELEASE 1​
[2025-10-30 06:32:48] [DME][RA] RELEASE sent -- leaving critical 

section 

 

[2025-10-30 06:29:48] [SERVER] Listening for connections...​
[2025-10-30 06:32:48] [SERVER] Received line: "POST 30 Oct 06:32 AM 

Lucy: "Hello""​
[2025-10-30 06:32:48] [SERVER] POST appended: 30 Oct 06:32 AM Lucy: 

"Hello"​
[2025-10-30 06:32:48] [SERVER] Received line: "POST 30 Oct 06:32 AM 

Joel: "Hi""​
[2025-10-30 06:32:48] [SERVER] POST appended: 30 Oct 06:32 AM Joel: 

"Hi" 

[2025-10-30 06:32:48] [DME][IN] Received REQUEST from Node 1 

(timestamp=1)​
[2025-10-30 06:32:48] [NET][SEND] REPLY 2​
[2025-10-30 06:32:48] [CLIENT 2] peer->me: RELEASE 1​
[2025-10-30 06:32:48] [NET][SEND] REQUEST 3 2​
[2025-10-30 06:32:48] [CLIENT 2] peer->me: REPLY 1​
[2025-10-30 06:32:48] [DME][RA] ENTER critical section (permission 

received)​
[2025-10-30 06:32:48] [NET][SEND] POST 30 Oct 06:32 AM Joel: "Hi"​
[2025-10-30 06:32:48] [CLIENT] (posted)​
[2025-10-30 06:32:48] [NET][SEND] RELEASE 2 

Observations 
The distributed mutual exclusion mechanism ensures that one client obtains 
permission first, while the other waits.​
Only after the first client releases access can the second proceed, confirming 
exclusive write control. 

1.​ Both clients attempted to post nearly simultaneously. 
2.​ The DME algorithm ensured proper coordination: 

●​ Client 1 sent REQUEST 1 1 to Client 2, waited for a REPLY. 
●​ Client 2 deferred its access until Client 1 completed its post and sent 

RELEASE 1. 
●​ After receiving the RELEASE, Client 2 then sent REQUEST 3 2, 

acquired the lock, and posted its message. 



●​ The server handled both POST requests sequentially, exactly as 
ordered by the DME protocol. 

●​ Both messages were appended atomically, ensuring no interleaving or 
corruption in the shared file. 

●​ Client 1 successfully acquired the critical section first and posted the 
message "Hello". 

●​ It then sent a RELEASE message signalling that it had exited the 
critical section. 

●​ Client 2 initially deferred posting while Client 1 held the lock. 
●​ After receiving RELEASE 1, it immediately requested and obtained 

permission, confirming strict ordering. 
●​ The timestamps confirm sequential, non-overlapping access. 

Screenshots 
Overall Execution (Server and Clients in one screen) 

 

Server Verification Screenshot 



 

Serialised post update on the chat.txt.  

Client 1 Screenshot 

 

Client 2 Screenshot 



 

Conclusion 

This test confirms that the Ricart–Agrawala Distributed Mutual Exclusion 
mechanism is functioning correctly: 

●​ Only one client may write (POST) at any time. 
●​ Requests are timestamped and serialized. 
●​ The second client waits until the first releases the lock before posting. 
●​ The server processes the resulting posts in strict order. 

 

 



Test Case 11 – Server-Side Handling 

Objective 
Verify that the server implements dedicated handlers for both VIEW and POST 
requests, requires no authentication, and responds correctly to each.​
The server should: 

●​ Accept requests from any connected client. 
●​ On VIEW: read and return the shared chat file. 
●​ On POST: append the new message to the shared file and acknowledge with 

"OK". 

Action 
1.​ Start the server node (172.31.23.9) using ./start_server.sh. 
2.​ Connect from both client nodes (172.31.22.222 and 172.31.27.84). 
3.​ Issue the following commands sequentially from the clients: 

●​ view 
●​ post "<text>” 

Log Evidence 
Executing: ./bin/server --bind 0.0.0.0:7000 --file ./chat.txt​
[2025-10-31 18:05:31] [SERVER] Starting on 0.0.0.0:7000 using file: 

./chat.txt​
[2025-10-31 18:05:31] [NET] Creating socket: family=2, socktype=1, 

protocol=6​
[2025-10-31 18:05:31] [SERVER] Listening for connections...​
[2025-10-31 18:07:03] [SERVER] Received line: "POST 31 Oct 06:07 PM 

Lucy: "I am Lucy""​
[2025-10-31 18:07:03] [SERVER] POST appended: 31 Oct 06:07 PM Lucy: 

"I am Lucy"​
[2025-10-31 18:07:04] [SERVER] Received line: "POST 31 Oct 06:07 PM 

Joel: "I am Joel""​
[2025-10-31 18:07:04] [SERVER] POST appended: 31 Oct 06:07 PM Joel: 

"I am Joel"​
[2025-10-31 18:07:54] [SERVER] Received line: "POST 31 Oct 06:07 PM 

Lucy: "Nice Meeting you Joel""​
[2025-10-31 18:07:55] [SERVER] Received line: "POST 31 Oct 06:07 PM 

Joel: "Nice meeting you, Lucy""​
[2025-10-31 18:08:06] [SERVER] Received line: "VIEW"​



[2025-10-31 18:08:06] [SERVER] VIEW request served. File size: 350 

bytes 

We can observe the following from the log snippet:  

1.​ The server listens on port 7000 for incoming client connections. 
2.​ When it receives a POST command, the corresponding log shows: 

[SERVER] Received line: "POST ..."​
[SERVER] POST appended: ... 

confirming that the message is written into chat.txt. 

3.​ When a VIEW command is received, the server reads the file and returns its 
contents to the requesting client: 

[SERVER] VIEW request served. File size: 350 bytes 

4.​ No authentication was required; both clients were able to communicate 
seamlessly. 

5.​ The final log line confirms that the server responded successfully and closed 
the connection. 

Observations 
The server correctly accepted simultaneous connections from both client nodes 
and processed their requests without requiring authentication. Each POST 
command was received, logged, and appended to the shared file (chat.txt), while 
VIEW commands triggered successful file reads and responses. The log entries 
confirm distinct handlers for both operations, with immediate acknowledgment 
after every POST and a complete chat history returned for each VIEW. Throughout 
the execution, no errors or access denials were observed, demonstrating stable, 
concurrent request handling and reliable I/O operations on the server side. 



Screenshots 

 

Conclusion 
The test verified that the server’s request-handling logic functions as intended. It 
efficiently distinguished between VIEW and POST requests, maintained the shared 
file consistently, and responded to all clients without authentication issues. The 
behaviour confirms correct implementation of server-side processing, ensuring 
reliable, centralised management of chat data in the distributed system. 

 



Test Case 12 – Concurrent view Operation 

Objective 
Verify that users can perform the view command at any time and that multiple 
users can view simultaneously. Try opening two client consoles and try issuing two 
simultaneous view operations and see how the server logs the request and handles 
the request. We may have to add server log traces to print the requests if not 
already implemented.  

Action 
Run both clients and issue view commands close together. 

Log Evidence 
Server  

[2025-11-01 10:05:42] [SERVER] Received line: "VIEW"​
[2025-11-01 10:05:42] [SERVER] VIEW request served. File size: 512 

bytes​
[2025-11-01 10:05:43] [SERVER] Received line: "VIEW"​
[2025-11-01 10:05:43] [SERVER] VIEW request served. File size: 512 

bytes 

Client 1  

[2025-11-01 10:05:42] [NET] TcpConnectHostPort() input: 

172.31.23.9:7000​
[2025-11-01 10:05:42] [NET] TcpConnect(): successfully connected​
[2025-11-01 10:05:42] [NET][SEND] VIEW​
[2025-11-01 10:05:42] [CLIENT] 31 Oct 06:07 PM Lucy: "I am Lucy"​
[2025-11-01 10:05:42] [CLIENT] 31 Oct 06:07 PM Joel: "I am Joel"​
[2025-11-01 10:05:42] [CLIENT] 01 Nov 09:21 AM Lucy: "Testing if Joel 

is online..." 

 

 



Client 2  

[2025-11-01 10:05:43] [NET] TcpConnectHostPort() input: 

172.31.23.9:7000​
[2025-11-01 10:05:43] [NET] TcpConnect(): successfully connected​
[2025-11-01 10:05:43] [NET][SEND] VIEW​
[2025-11-01 10:05:43] [CLIENT] 31 Oct 06:07 PM Lucy: "I am Lucy"​
[2025-11-01 10:05:43] [CLIENT] 31 Oct 06:07 PM Joel: "I am Joel"​
[2025-11-01 10:05:43] [CLIENT] 01 Nov 09:21 AM Lucy: "Testing if Joel 

is online..." 

Observations  
When both clients issued the view command nearly simultaneously, the server 
successfully accepted and processed both requests in parallel. The server logs 
indicated sequential handling of incoming VIEW operations without delay or 
interference, while both clients displayed identical chat file contents. This confirms 
that the system supports concurrent read access, with no blocking or inconsistency 
observed between sessions. The test also demonstrated that the server efficiently 
manages multiple client connections and maintains a consistent shared state across 
all nodes. 

Screenshots 
Server 

 

Client1 



 

Client2 

 

Using the command-line interface, it was confirmed that the system efficiently 
processed concurrent requests from different clients, ensuring consistent file 
content delivery across all sessions. 



Conclusion  
The test validated that concurrent view operations are handled correctly by the 
server. Multiple clients were able to retrieve the same chat history simultaneously 
without contention or degradation in performance. This confirms that the system’s 
design supports non-blocking, concurrent read operations, ensuring 
responsiveness and consistency during simultaneous access. 

Summary 
The distributed chat application successfully fulfils all requirements outlined in the 
assignment specification. The system demonstrates reliable coordination between 
multiple independent nodes using a client–server architecture, with a centralised 
shared file managed exclusively by the server. 

The implementation of the Ricart–Agrawala distributed mutual exclusion algorithm 
ensures that all write operations (post) are serialised across clients without relying 
on any central coordinator. This mechanism enforces fairness by granting access in 
strict logical timestamp order and guarantees that no client experiences starvation 
or indefinite waiting. 

Furthermore, the overall design is scalable and extensible to N nodes, as the 
Ricart–Agrawala protocol operates in a fully decentralised manner. Each node can 
participate in mutual exclusion by exchanging request and reply messages with 
every other node in the system. With minor configuration changes, the current 
two-client setup can be generalised to a multi-node distributed environment while 
preserving correctness, fairness, and consistency. 

In conclusion, the system demonstrates a fully functional, fault-tolerant, and 
synchronised distributed application that satisfies all key properties of mutual 
exclusion, coordination, and data integrity within a cloud-hosted infrastructure. 
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