Table of Content

Language used for the Implementation
System Overview

Protocol

Step-by-Step Work Flow

1) Setting up the AWS infrastructure
Create key pairs
Create a Security Group
Launch EC2 instances

Record Public & Private IPs for all instances (used in scripts)

SSH & Install the necessary tools
Connectivity check
2) Writing the CLIENT script
Protocol Overview
Expected responses from SERVERI
Code Overview
Main execution flow
Source Code Listing
3) Writing the SERVERI script
How the conversation works
Decision making
Code Walkthrough
Safety and Reliability
How to run it
Source Code Listing
4) Writing the SERVER2 script
Code Walkthrough
How to run it
Source Code Listing
5) Testing
Test Setup
Client Machine Setup
Serverl Setup
Server2 Setup
Test Casel
End-to-End Verification of Client-Server File Sync

© Ul xR W W W

N DN NN b m - O N U S Y _ =
OO NOC © oo TITOO R RO LOUREERRR OO

e Precondition
e Test Steps
e Expected Result
Test Case2
File Read Operation with Missing File on One Server
e Precondition
e Test Steps
e Expected Result
Test Case3
File Read Operation When File Missing on Both Servers
e Precondition
e Test Steps
e Expected Result
Test Case4
File Read Operation When Servers Have Identical File
e Precondition
e Test Steps
e Expected Result

26
26
27
28
28
28
28
29
32
32
32
32
33
34
34
34
34
34

Distributed Computing Assignment

Language used for the Implementation

Python 3.

System Overview

We implemented the required client-server distributed file service with one client,
SERVERI (coordinator), and SERVERZ (peer file server). Both servers maintain a replica
directory ~/file_storage. Due to possible update delays, SERVERI always cross-checks
with SERVER2 before replying to the client.

Protocol

Client — SERVERI1 (TCP:5001): GET <pathname>\n
SERVER1 — SERVER2 (TCP:5002): GET <pathname>\n
e SERVER2 — SERVERI:
o FOUND <length>\n followed by <length> bytes, or
o NOTFOUND\n.
e SERVERI — Client:
o OK ONE <length>\n followed by one file copy, or
o OK BOTH <lengthl> <length2>\n followed by two file copies (SERVERI then
SERVER2), or
o ERROR NOTFOUND\n when neither server has the file, or invalid request.

SERVER 1 has SERVER 2 has
filel.txt version 1 filel.txt version 2
CLIENT
P ™ — " —
Q request for filel.txt request for filel.txt
"\.) -~ ~

T response for filel.ixt request

forward filel.txt version 1
and version 2 if they differ

Figure 1: Distributed File Service Architecture

Step-by-Step Work Flow

1) Setting up the AWS infrastructure
Create key pairs

- Go to the AWS dashboard and search for key pairs.

ws 5t (Q KeyPaif

e Features

EC2

Key pairs

EC2 feature

Dashboard

———_L i

- Click on Create Key Pair.

& 8
. o 1\ P N
EC2 ¢ Key pairs (5) we @ (" actions ¥ Croate kay pair
Q fnda 1 2
Name v Type A Created v Fingerprint. 0 v

- v koey-pair 2 2025/03/02 11:32 GMT+0 1B 1S SE TSRS 1 OEOdEaEE S fel.. koy-Dcleb3h2063d541aa

aircratt-key-pair = 2025/04/23 10:33 GMT+1 2ca4:dcbbE 2 EBEA00S EOcTa2 AT IATS T

kay-D61460602522bEfbb

key-02deb545a5a7 43369

key-O7adISc0237 290008

key-041 30682 2Mb 7d 3901

e Name the key pair (e.g., MyFileSystemKeyPair). Leave the remaining fields at their
default values and click Create key pair.
e Keep the .pem safe as this will be used to SSH into the AWS instances.

Create a Security Group

e Search for security groups. On the Security Group page, click on the Create security
group button.

P I Y arwernt)
EC2 < Security Groups (12) wr (C) (_actions v) ¥ | Create security group
Q F— 1 @
Name - Security group 1D v Securi ity group name v VPCID v Description v Owner
ElasticMapRedisce-master ot [2 Master group for Elastic MapRedisc cre.. 402691950139
launch-wizard-7 vpc-87ss8 10t [3 launch-wizard7 crested 2025-05-01T1, 402691950135

¥ Instances

Name the new security group (e.g., MyFileServerSecurityGroup).
On the inbound rules, open TCP port 22 for SSH, TCP port 5001 (SERVER1), TCP port
5002 (SERVER2).

e For the demonstration, keep Source = Anywhere.

e On the outbound rules, allow all traffic.

Inbound rules

Type Info Protocol Infe Port range Infs
SSH v
Custom TCP v 5001
Custom TCP v 5002

Outbound rules .

Type into Protocel Info Port ranga info

All traffic v

Tags -

Source Infe

Anywhe...

Anywhe

Amywhe

Destination infs

Custom

v

[

Description - aptional lnfs

Description - optional infe

A tag Is a label that you assign to an AWS resource. Each tag consists of a key and an optional value. You can use tags to search and filter your resources or track your AWS costs

No Lags assoclated with e resouree.

ou can add up to 50 mare tags

Cancel 1 Create seeurity group

e Create a security group. Once the group is created, it should look somewhat like the

example shown below:
sg-0dd4a58da8a9aaBad - MyFaileServerSecurityGroup

Details

Security group name
I myfaileServersecurityGroup

Security group ID
I0] sg-0dddasadaBagaasad

Owner
D 402691950139

Inbound rules count
3 Permission entries

Inbound rules Outbound rules Sharing - new

Inbound rules (3)

Q, search
Name v | Securitygrouprule i ¥ | 1P varsion
- sgr-067302404bdB15525 1Pva
- s9r-002adB339555e9921 iPya
- sgr-Ded670ca77fa1f498 1Pva

VPC associations - new

Tags

Type
Custom TCP
SSH

Custom TCP

Description
I0] Secunity group for distributed file server demo

‘Outbound rules eaunt
1 Permission entry

L

Frotocol
TP
TCP

TCP

-

Port
5007
22

5002

rangs

vPCID
ype-B7ceatef [3

© Crommeos
1 @
v | Ssource ¥ | Description
0.0.0.0/0 -
0.0.0.0/0 -

0.0.0.0/0 -

e This security group will be shared by Server 1, Server 2, and the Client.

Launch EC2 instances

o We will need at least three EC2 instances—one for the client and one for each of the

two servers.

e Let’s create three identical EC2 instances with the following details:

Name(s): CLIENT-Node, SERVER1, SERVER2

Security Group: MyFaileServerSecurityGroup
Key Pair: MyFileSystemKeyPair
AWS ASTI Type: Ubuntu 22.04 t3.micro or t2.micro

e Go to EC2 Dashboard -> Instances -> Launch Instance.

e EC2 > Instances @ e &

a
Last updated v " v =
EC2 < Instances info e than s e connect) (Uinstance state v) (" Actions v) ((Launch instances
| Q Find Instance by attribute or tag (case-sensitive) | | Allstates v |
Dashboard
AWS Global View [2 ((Clearfitters) 1)
Events Name & v | Instance D Instancestate v | Instancetype v | Status check Alarm status Availability Zone v | Public

v Instances
No matching instances found
Instances

4 >

Instance Types

- Choose Ubuntu as the OS image.

- Select Ubuntu 24.04 as the AMI. Select the instance type (t3.micro).

Name and tags i
Name

CLIENT-Node Add additional tags

v Application and OS Images (Amazon Machine Image) i

An AMI contains the operating system, application server, and applications for your instance. If you don't see a suitable AMI below, use the search field or choose

Browse more AMis.

Q, search our full catalog including 10005 of application and OS images

Recents My AMis Quick Start

Amazon macOs Ubuntu Windows Red Hat SUSE Linux Deblan Q
Linux
Browse more AMIs
aws & ubuntu® || Bf Microsoft || 4 RedHat (g @
Mac SUSE debian
Amazon Machine Image (AMI)
Ubuntu Server 24.04 LTS (HVM), 55D Volume Type Free tier eligible
ami-046c2381f11878233 (64-bit (x86)) / ami-0122205e4fe252445 (64-bit (Arm)) v

rtualization: hvm EMA enabled: true Root device type: ebs

e Select the previously created key pair.

v Instance type Info | Get advice

Instance type
t3.micro Free tier eligible (P All generations
Family:t3 2vCPU 1 GiBMemory Current generation: true On-Demand Linux base pricing: 0.0118 USD per Hour v

On-Demand SUSE base pricing: 0.0118 USD per Hour On-Demand Ubuntu Pro base pricing: 0.0153 USD per Hour

On-Demand RHEL base pricing: 0.0406 USD per Hour On-Demand Windows base pricing: 0.027 USD per Hour Compare instance types

Additional costs apply for AMIs with pre-installed software

v Key pair (login) .

You can use a key pair to securely connect to your instance. Ensure that you have access to the selected key pair before you launch the instance.

Key pair name - required

Select ' | C Create new key pair
(al)
Proceed without a key pair (Not recommended) Default value

my-new-key-pair
Type: rsa

aircraft-key-pair
Type: rsa

LabAssignment1_Key_Pair
Type: rsa

mpi-key
Type: rsa

MyFileSystemKeyPair
Type: rsa

my-aws-multi-core

Type: rsa your instance.

e Attach the created security group under Network settings.

¥ Network settings i

Network Info

vpe-87c681ef

Subnet Info

No preference (Default subnet in any availability zone)
Auto-assign publicIP Info

Enable

Additional charges apply when outside of free tier allowance

Firewall (security groups) | info
A security group is a set of firewall rules that control the traffic for your instance. Add rules to allow specific traffic to reach your instance.

Create security group [© select existing security group]

Commaon security groups | Info

Select security groups 4 | C compare security group rules

(a)

g =

VPC vpc-87c681ef

— launch-wizard-6 5g-06bb2b4f1416f3f5d
— VPC vpcB7c681ef

Advanced
— launch-wizard-4 5g-08fcfc085b6967063
— WPC: vpc-87c681ef

— launch-wizard-1 sg-0a9a725b8251dbo4a
— VPC vpc-B7c687ef

— MyFaileServerSecurityGroup sg-0dd4a58da8agaa8ad
— VPC vpc-B7c681ef

3

The selected AMI contains instance store volumes, however the instance does not allow any Instance store volumes. None of the instance store volumes from the
AMI will be accessible from the instance

— default
— VPC: vpc-B7c681ef

A G

e Since we need three EC2 instances with the same base configurations, under
Summary on the right hand side set the number of instances to 3.

v Summary

Number of instances Info

3

When launching more than 1 instance, consider EC2 Auto Scaling

Software Image (AMI)
Canonical, Ubuntu, 24.04, amdé...read more
ami-02d26659fd82cf299

Virtual server type (instance type)
t3.micro

e Finally Click the Launch instance.

Firewall [security group)
¥ Configure storage . Advaneed -

storage (volumes)

x| a G2 | gps ¥ | Rootvolume, 3000 I0PS, Not encrypted .)
1 volume(s) - 8 GiB

X ® Free tier: In your first year of opening an AWS account, X
you gat 750 hours per month of 12.micre instance usage

[(@ Frea tier eligible customers can get up to 30 GB of EBS General Purpose (S50) or Magnetic storage

{or t3.micro where t2micro Bn't available) when used

with free ter AMIs, 750 hours per month of public IPve
address usage, 30 GIB of EBS storage. 2 million 1/0s, 1 GB

The selected AMI contains instance store volumes, however the instance does not allow any instance store volumes. None of the instance store volumes from the of snapshots, and 100 GB of bandwidth to the internat.

Data transfer eharges are not inluded as part of the free
tier allowande,

AMI will be accessible from the instance

@ Click refresh to view backup information c

The tags that you assign determine whether the Instance will be backed up by any Data Lifecycle Manages policies.
0 x File systems Edit cancel

B2 Preview code

» Advanced details i

e This will create three EC2 instances with the selected configurations.
e After the instances are created, go to the EC2 page. You should be able to see all
three instances running.

Resources @

You are using the following Amazon EC2 resources in the Europe (Londen) Region:

Instances [running) 3 Auto Scaling Groups o] Capacity Reservations 0
Dedicated Hosts 0 Elastic IPs o] Instances 3
Key pairs 6 Load balancers 0 Placement groups 0
Security groups 13 Snapshots 0 Volumes 3

e Name all the instances for easy identification.

Instances (3) s e @ Connect (Instance state ¥) C Actions v) Launch instances ¥
Q. Find instance by attribute or tag (cose-sensitive) All states ¥
[Instance state = running [X] (Clear filters) 1]
Name &f v Instance ID | instance state % Instance type ¥ Status check Alarm status Availability Zone ¥ Public IPv4 DNS. v | PubliciPva.. ¥ | Etastic
SERVER2 @ Running @& & t3.micro @ 3/3 checks passec View alarms + eu-west-2a ec2-18-130-207-66.8u-. 18.130.207.66 -
CLIENT-Node @ Running @ & t5.micro @ 5/5 checks passec View alarms + eu-west-2a ©c2-18-150-101-24.8u- 18.130.101.24 -
SERVER1 1-01130a60698320675 @ Running @ € t3.micro @ 3/3 checks passec View alarms + eu-west-2a £c2-18-171-162-167 ... 18.171.162.167 -

Record Public & Private IPs for all instances (used in scripts)

e These addresses will be required later when we write the scripts to establish
communication between the client and the servers.
e In this case, the following are the Private and Public IPs of each instance:

CLINET-Node:
Public IPv4 address: 18.138.101.24
Private IPv4 addresses: 172.31.24.111

SERVER1:

Public IPv4A address: 18.171.162.167

Private IPv4 addresses: 172.31.16.124

SERVER2:
Public IPv4A address: 18.130.207.66
Private IPv4 addresses: 172.31.26.2082

SSH & Install the necessary tools
e First, we need to change the file permissions of the key pair file (downloaded in one
of the previous steps) by running the following command.

chmod 400 ~/Downloads/MyFileSystemKeyPair.pem

e The sample SSH command will be lie:
ssh -i ~/Downloads/MyFileSystemKeyPair.pem ubuntu@<EC2 Public IPv4 Addr>

e Let’s SSH into the Client-Node and install the necessary packages:

~$ ssh -i ~/Downloads/MyFileSystemKeyPair.pem ubuntu@18.130.101.24
ubuntu@ip-172-31-24-111:~$% sudo apt update
ubuntu@ip-172-31-24-111:~$% sudo apt install netcat-openbsd -y
ubuntu@ip-172-31-24-111:~$% which nc

/usr/bin/nc

e Similarly, SSH into the Server 1instance and run the commands

~$ ssh -i ~/Downloads/MyFileSystemKeyPair.pem ubuntu@18.171.162.167
~$ sudo apt update

~$% sudo apt install netcat-openbsd -y

~$ which nc

/usr/bin/nc

e Follow the exact set of steps for Server 2 as well.

~$ ssh -i ~/Downloads/MyFileSystemKeyPair.pem ubuntu@l18.130.207.66
~$ sudo apt update

~$ sudo apt install netcat-openbsd -y

~$ which nc

/usr/bin/nc

e Now, all three instances are configured and ready for a quick connectivity check.

Connectivity check

e Before we move into the actual File Service server implementation, let’s check the
connections between the instances to make sure everything is set up correctly.
¢ Run the following on SERVERL:

ubuntu@ip-172-31-26-202:~% nc -1 -p 5002
e Then run the following on the CLIENT:

ubuntu@ip-172-31-24-111:~$ echo "hello from CLIENT to SERVER1" | nc
172.31.16.124 5002

e You should be able to see the message from the client displayed on SERVERI:
ubuntu@ip-172-31-16-124:~% nc -1 -p 5002

hello from CLIENT to SERVER1

e This confirms that the connection between the CLIENT-Node and SERVERI is
working correctly. We could also have used port 5001, since both ports 5001 and
5002 are open for TCP connections.

e You can repeat the same steps to test the connection between SERVERI and
SERVER2.

2) Writing the CLIENT script

The client.py program is the interface for users to request files from our distributed file
service. Its job is simple: connect to SERVERI (the coordinator), request a file, and handle
the response. It doesn't interact with SERVER2 directly — it trusts SERVERI1 to coordinate
and return the correct data.

Protocol Overview

When the client connects to SERVERI on port 5001, it sends a request in the form:

GET filename

SERVERI then processes the request — including checking with SERVER2 — and replies
with a structured response, followed by file data if available. The client parses this response
and prints the result.

Expected responses from SERVER1

OK ONE <length> — a single version of the file follows.

e OK BOTH <lengthl> <length2> — two versions follow (from SERVERI and
SERVER2).

e ERROR NOTFOUND — the file doesn't exist on either server.

Code Overview
The script uses two helper functions:

e recv_line(conn): Reads a line from the socket (used for headers).
e recv_exact(conn, n):Reads exactly n bytes (used for file contents).

Main execution flow

1. Parses the filename from command-line args (defaults to "filel.txt").
2. Connects to SERVERI1 over TCP.

3. Send a GET request.

4. Reads and interprets the response header.

5. Receives and displays file data based on the response type.

Source Code Listing

#!/usr/bin/env python3
client.py
import socket, sys

SERVER1_IP = "172.31.16.124" # <-- PUT SERVER1 PRIVATE IP HERE
SERVER1 _PORT = 5001
filename = sys.argv[1l] if len(sys.argv) > 1 else "filel.txt"

def recv_line(conn):
buf = bytearray()
while True:
b = conn.recv(l)
if not b:
break
buf += b
if buf.endswith(b"\n"):
break
return bytes(buf).decode(errors="replace").rstrip("\n")

def recv_exact(conn, n):
buf = bytearray()
while len(buf) < n:
chunk = conn.recv(n - len(buf))
if not chunk:
raise ConnectionError("socket closed while reading body")
buf += chunk
return bytes(buf)

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.connect((SERVER1_IP, SERVER1_PORT))
s.sendall(f"GET {filename}\n".encode())

header = recv_line(s) # e.g., OK ONE <len> / OK BOTH <11> <12> / ERROR
NOTFOUND
parts = header.split()
if parts[:2] == ["OK", "ONE"]:
length = int(parts[2]); data = recv_exact(s, length)
print("[CLIENT] Received ONE copy:")
print(data.decode(errors="ignore"))

Optionally save:
open("out one.txt","wb").write(data)
elif parts[:2] == ["OK", "BOTH"]:
11, 12 = int(parts[2]), int(parts[3])
dl = recv_exact(s, 11); d2 = recv_exact(s, 12)
print("[CLIENT] Received BOTH copies:")
print("\n--- SERVER1l version ---\n", dl.decode(errors="ignore"))
print("\n--- SERVER2 version ---\n", d2.decode(errors="ignore"))
Optionally save:
open("out_serverl.txt","wb").write(dl)
open("out_server2.txt","wb").write(d2)
else:
print("[CLIENT]", header)

3) Writing the SERVERI script

The serverl.py program is the coordinator of our small distributed file service. Its job is
simple to explain: it waits for clients to connect on port 5001, checks if the requested file
exists locally, always asks SERVER2 for the same file, and then decides what to send back.
Think of it as the “middle manager” — it doesn't just rely on its own copy but always
double-checks with SERVER2 before answering the client.

How the conversation works

When a client connects, it sends a request like GET filel.txt. SERVERI1 then talks to
SERVER? in exactly the same way. If SERVER? replies that the file exists, it also sends the
file contents back; if not, it says NOTFOUND. Based on this exchange, SERVERI then
prepares its response for the client.

Decision making

e If both SERVERI and SERVER2 have the file and their contents are identical, SERVER1
keeps things efficient and returns just one copy.

e If both servers have the file but the contents are different, SERVERI sends both
versions so the client can see the mismatch.

e If only one of the two servers has the file, SERVERI1 forwards that copy.
If neither server has it, SERVERI1 sends back a simple “not found” error.

Code Walkthrough

The script uses helper functions to keep things tidy. read_local() looks up the file under
~/file_storage on SERVERL. get_from_server2() connects out to SERVER2, asks for the
same file, and collects the result. Once both responses are in, SERVER1 compares them and

decides which of the send_one(), send _both(), or send_error() functions to use when
replying to the client.

Safety and Reliability

The script is careful about what paths it accepts (so clients can’t wander outside the
storage folder), it checks that full files are received before making decisions, and it catches
errors so that one misbehaving server doesn't crash the whole service. Logging messages
such as “Versions differ — sent BOTH” make it easy to see what happened during each
request.

How to run it

Before starting, the SERVER2_IP variable needs to be updated to the private IP of SERVER2.
Once SERVER?2 is already running, you can start this script on SERVER1 with the following
command on the command prompt:

ubuntu@ip-172-31-16-124:~$% ./serverl.py
[SERVER1] Listening on 0.0.0.0:5001

It will sit listening on port 5001, handle each incoming client request, and coordinate with
SERVER2 in the background. In short, SERVER1 is the smart middle layer: it listens, checks
both sides, makes a fair decision, and keeps the client informed.

Screenshot of running serverl.py on EC2 instance:

Last login: Sun Sep 7 14:41:05 2025 from 81.129.72.226

:-S$.fserverl.py
SERVER1] Listening on 0.0.08.0:5001

Source Code Listing

#!/usr/bin/env python3
import socket, os

HOST "9.0.0.0"

PORT 5001

SERVER2_IP = "172.31.xx.yy" # <-- replace with SERVER2 private IP
SERVER2_PORT = 5002

ROOT = os.path.expanduser("~/file_storage")

def recv_line(conn):
buf = bytearray()
while True:

http://server1.py

def

def

def

def

def

def

b = conn.recv(1)
if not b: break
buf += b
if buf.endswith(b"\n"): break
return bytes(buf).decode(errors="replace").rstrip("\n")

recv_exact(conn, n):

buf = bytearray()

while len(buf) < n:
chunk = conn.recv(n - len(buf))
if not chunk: raise ConnectionError("socket closed early")
buf += chunk

return bytes(buf)

get_from_server2(filename: str) -> bytes | None:
try:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s2:
s2.connect((SERVER2_IP, SERVER2_PORT))
s2.sendall(f"GET {filename}\n".encode())
header = recv_line(s2)
if header == "NOTFOUND": return None
if header.startswith("FOUND "):
length = int(header.split()[1])
return recv_exact(s2, length)
except Exception as e:
print("[SERVER1] Error contacting SERVER2:", e)
return None

read_local(filename: str) -> bytes | None:
rel = filename.lstrip("/")
path = os.path.normpath(os.path.join(ROOT, rel))
if not path.startswith(ROOT): return None
if os.path.isfile(path):

with open(path, "rb") as f: return f.read()
return None

send_one(conn, data: bytes):
conn.sendall(f"OK ONE {len(data)}\n".encode() + data)

send_both(conn, dl: bytes, d2: bytes):
conn.sendall(f"0OK BOTH {len(dl)} {len(d2)}\n".encode() + di1 + d2)

send_error(conn, msg="ERROR NOTFOUND"):

conn.sendall((msg + "\n").encode())

def handle_client(conn, addr):
try:
line = recv_1line(conn)
if not line.startswith("GET "):
send_error(conn, "ERROR BADREQUEST"); return
filename = line[4:].strip()
print(f"[SERVER1] CLIENT {addr} requested {filename}")

local = read_local(filename)
remote = get from_server2(filename)

if local and remote:
if local == remote:
send_one(conn, local)
print("[SERVER1] Both matched — sent ONE")
else:
send_both(conn, local, remote)
print("[SERVER1] Versions differ — sent BOTH")
elif local:
send_one(conn, local)
print("[SERVER1] Only SERVER1 had it — sent ONE")
elif remote:
send_one(conn, remote)
print("[SERVER1] Only SERVER2 had it — sent ONE")
else:
send_error(conn)
print("[SERVER1] Not found on either")
except Exception as e:
print("[SERVER1] Error:", e)
try: send_error(conn, "ERROR INTERNAL")
except: pass

def main():
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s1:
sl.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s1.bind((HOST, PORT))
sl.listen()
print(f"[SERVER1] Listening on {HOST}:{PORT}")
while True:
conn, addr = sl.accept()
with conn: handle_client(conn, addr)

4) Writing the SERVER?2 script

The server2.py program is a peer server. Its sole purpose is to serve file content to Server
1 when requested. It doesn't communicate with the client directly, but rather acts as a data
source within the distributed network. It listens for requests from serverl on port 5002.

Code Walkthrough

The script uses helper functions for the smooth and error free execution. It uses a
recv_line function, which is used to receive the request from serverl and send the request
as a string to the handle function which is responsible for reading the file path from the
recv_line function and checks for the filename if it exists. Send_found responsible for
sending the file to serverl if found and send_notfound to let serverl know no such file
exists in server2.

How to run it

SERVER?2 is defined to be running on port 5002, you can start this script on SERVER2 with
the following command on the command prompt:

ubuntu@ip-172-31-31-119:~$% ./server2.py
[SERVER2] Listening on ©.0.0.0:5002

It will sit listening on port 5002, handle each incoming serverl request
Screenshot of running SERVER2.py on EC2 instance:

[ec2-user@ip-172-31-31-119 ~]S ./server2.py

[SERVER2] Listening on 0.0.0.0:5082

Source Code Listing

#!/usr/bin/env python3
import socket, os

HOST = "90.0.0.0"
PORT = 5002
ROOT = os.path.expanduser("~/file_storage")

def recv_line(conn):

buf = bytearray()
while True:
b = conn.recv(1)
if not b: break
buf += b
if buf.endswith(b"\n"): break
return bytes(buf).decode(errors="replace").rstrip("\n")

def send_found(conn, data: bytes):
header = f"FOUND {len(data)}\n".encode()

conn.sendall(header + data)

def send_notfound(conn):
conn.sendall(b"NOTFOUND\Nn")

def handle(conn, addr):

try:
line = recv_line(conn)
if not line.startswith("GET "):
send_notfound(conn); return
rel = line[4:].strip().1lstrip("/")
path = os.path.normpath(os.path.join(ROOT, rel))
if not path.startswith(ROOT):
send_notfound(conn); return
if os.path.isfile(path):
with open(path, "rb") as f: data = f.read()
send_found(conn, data)
print(f"[SERVER2] Sent {rel} ({len(data)} bytes) to {addr}")
else:
send_notfound(conn)
print(f"[SERVER2] {rel} not found for {addr}")
elif local:
send_one(conn, local)
print("[SERVER1] Only SERVER1 had it — sent ONE")
except Exception as e:
print("[SERVER2] Error:", e)
def main():

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
sl.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s1.bind((HOST, PORT))
sl.listen()

print(f"[SERVER1] Listening on {HOST}:{PORT}")
while True:

conn, addr = s.accept()

with conn: handle_client(conn, addr)

5) Testing

Test Setup

e Different files on SERVER] and SERVER? (initial state) — client receives BOTH copies
(shows each version).

e Identical files on both servers (edit SERVER?’s file to match SERVERI) — client
receives ONE copy.

e Nested path provided by client (e.g., docs/report.txt with different contents) —
client receives BOTH copies.

Client Machine Setup

e Configured client machine with the PKF file.
e Created a file client.py in /home/ubuntu on the client node.

&2 ubuntu@ip-172-31-34-69: ~

Serverl Setup
1. Configured Serverl using the PKF file.
2. Created a file serverl.py in /home/ubuntu.
3. Created a directory file_storage in /home/ubuntu.
4.

Created a file filel.txt inside /home/ubuntu/file_storage.

&2 ubuntu@ip-172-31-34-27: ~

ubunt

EL? ubuntu@ip-172-31-34-27: ~/file_storage

ubuntu@ip- s 1s

Server2 Setup

1. Configured Server2 using the PKF file.

Created a file server2.py in /home/ubuntu.

Created a directory file_storage in /home/ubuntu.

Created a file filel.txt inside /home/ubuntu/file_storage.

W N

&2 ubuntu@ip-172-31-45-10: ~

n@ip—-1-
Jho Subuntu
ubuntuf@ip-17

ubuntu@ip-1

1ubun
ubt

Update the SERVER2_IP variable in the serverl.py script with the private IP address of
Server?2.

&P ubuntu@ip-172-31-34-27: ~

Update the SERVER1_IP variable in the client.py script with the private IP address of
Serverl.

&2 ubuntu@ip-172-31-34-69: ~

Test Casel

End-to-End Verification of Client-Server File Sync
e Precondition

o Serverl (serverl.py)and Server2 (server2.py) are deployed and accessible
from the Client.
client.py is configured to connect to both servers.
Test files are available on both the servers .

o Test Steps
o Start Serverl by running serverl.py.

o Start Server2 by running server2.py.
o Start the Client by running client.py.

o Initiate file synchronization from the client.

e Expected Result

The client should successfully connect to both Server1 and Server2.
Files from the servers should be visible in the client’s file system after sync.

o When file conflicts exist (e.g., identical files on both servers), synchronization
should complete without data loss.

£

ubuntu@ip-172-31-45-10: ~

Test Case2

File Read Operation with Missing File on One Server

e Precondition

1. filel.txt exists on both Serverl and Server2.
2. Client, Serverl, and Server2 are configured properly with the Python scripts.

o Test Steps

Remove filel.txt from Serverl.

Execute the Python script (client.py) from Client.
Execute the Python script (serverl.py) from Serverl.
Execute the Python script (server2.py) from Server2.

SN

http://client.py
http://server1.py
http://server2.py

e Expected Result

Since filel.txt is removed from Serverl], the client should successfully read the file
content from Server2 as per the configuration.

#® ubuntu@ip-172-31-34-27: ~

g~ ubuntu@ip-172-31-45-10; ~

&P ubuntu@ip-172-31-34-69; ~

Test Case3

File Read Operation When File Missing on Both Servers
e Precondition

o filel.txt is not present on either Serverl or Server2.
o Client, Serverl, and Server2 are configured properly with the Python scripts.

o Test Steps

o Ensure filel.txt is deleted from Serverl.
o Ensure filel.txt is deleted from Server2.
o Execute the Python script from the Client machine.

e Expected Result

o The client script should fail to retrieve the file from either server.
o The client should display an error message “[CLIENT] ERROR NOTFOUND".

ubuntu@ip-172-31-34-27: ~

@ ubuntu@ip-172-31-34-69; ~

Test Cased

File Read Operation When Servers Have Identical File

Single Copy Sent by Serverl1 to client if files are identical both on Server 1 and Server 2.

e Precondition

o filel.txt exists on both Serverl and Server2 with identical content.
o Client, Serverl, and Server2 are configured properly with the Python scripts.

o Test Steps

o Keep filel.txt on Serverl and Server2 with the same content.
o Execute the Python script from the Client machine.
o Serverl should handle the client request and send one copy of filel.txt.

e Expected Result

o The client should successfully receive and read the file content from Server1.

o The client should not receive duplicate copies, even though the file also
exists on Server?2.

o Output should show the file content exactly once.

Serverl Content:

Server2 Content:

Execute scripts client.py, serverl.py & server2.py

http://client.py
http://server1.py
http://server2.py

= ubuntu@ip-172-31-34-69: ~

	
	Distributed Computing Assignment
	Language used for the Implementation
	System Overview
	Protocol
	Step-by-Step Work Flow
	1) Setting up the AWS infrastructure
	Create key pairs
	Create a Security Group
	Launch EC2 instances
	Record Public & Private IPs for all instances (used in scripts)
	SSH & Install the necessary tools
	Connectivity check

	2) Writing the CLIENT script
	Protocol Overview
	Expected responses from SERVER1
	Code Overview
	Main execution flow
	Source Code Listing

	3) Writing the SERVER1 script
	How the conversation works
	Decision making
	Code Walkthrough
	Safety and Reliability
	How to run it
	Source Code Listing

	4) Writing the SERVER2 script
	Code Walkthrough
	How to run it
	Source Code Listing

	5) Testing
	Test Setup
	Client Machine Setup
	Server1 Setup
	Server2 Setup

	Test Case1
	End-to-End Verification of Client–Server File Sync
	●​Precondition
	●​Test Steps
	●​Expected Result

	Test Case2
	File Read Operation with Missing File on One Server
	●​Precondition
	●​Test Steps
	●​Expected Result

	Test Case3
	File Read Operation When File Missing on Both Servers
	●​Precondition
	●​Test Steps
	●​Expected Result

	Test Case4
	File Read Operation When Servers Have Identical File
	●​Precondition
	●​Test Steps
	●​Expected Result

