
Table of Content 
 
Language used for the Implementation​ 3 
System Overview​ 3 
Protocol​ 3 
Step-by-Step Work Flow​ 4 

1) Setting up the AWS infrastructure​ 4 
Create key pairs​ 4 
Create a Security Group​ 4 
Launch EC2 instances​ 5 
Record Public & Private IPs for all instances (used in scripts)​ 9 
SSH & Install the necessary tools​ 10 
Connectivity check​ 10 

2) Writing the CLIENT script​ 11 
Protocol Overview​ 11 
Expected responses from SERVER1​ 11 
Code Overview​ 11 
Main execution flow​ 11 
Source Code Listing​ 12 

3) Writing the SERVER1 script​ 13 
How the conversation works​ 13 
Decision making​ 13 
Code Walkthrough​ 13 
Safety and Reliability​ 14 
How to run it​ 14 
Source Code Listing​ 14 

4) Writing the SERVER2 script​ 17 
Code Walkthrough​ 17 
How to run it​ 17 
Source Code Listing​ 17 

5) Testing​ 19 
Test Setup​ 19 

Client Machine Setup​ 19 
Server1 Setup​ 20 
Server2 Setup​ 22 

Test Case1​ 26 
End-to-End Verification of Client–Server File Sync​ 26 



● Precondition​ 26 
● Test Steps​ 26 
● Expected Result​ 27 

Test Case2​ 28 
File Read Operation with Missing File on One Server​ 28 

● Precondition​ 28 
● Test Steps​ 28 
● Expected Result​ 29 

Test Case3​ 32 
File Read Operation When File Missing on Both Servers​ 32 

● Precondition​ 32 
● Test Steps​ 32 
● Expected Result​ 33 

Test Case4​ 34 
File Read Operation When Servers Have Identical File​ 34 

● Precondition​ 34 
● Test Steps​ 34 
● Expected Result​ 34 

 

 



Distributed Computing Assignment  

Language used for the Implementation 
Python 3. 

System Overview 
We implemented the required client–server distributed file service with one client, 
SERVER1 (coordinator), and SERVER2 (peer file server). Both servers maintain a replica 
directory ~/file_storage. Due to possible update delays, SERVER1 always cross-checks 
with SERVER2 before replying to the client. 

Protocol 
●​ Client → SERVER1 (TCP:5001): GET <pathname>\n 
●​ SERVER1 → SERVER2 (TCP:5002): GET <pathname>\n 
●​ SERVER2 → SERVER1: 

○​ FOUND <length>\n followed by <length> bytes, or 
○​ NOTFOUND\n. 

●​ SERVER1 → Client: 
○​ OK ONE <length>\n followed by one file copy, or 
○​ OK BOTH <length1> <length2>\n followed by two file copies (SERVER1 then 

SERVER2), or 
○​ ERROR NOTFOUND\n when neither server has the file, or invalid request. 

 



Step-by-Step Work Flow 

1) Setting up the AWS infrastructure 

Create key pairs 

- Go to the AWS dashboard and search for key pairs.​

​
​
- Click on Create Key Pair.​

 

●​ Name the key pair (e.g., MyFileSystemKeyPair). Leave the remaining fields at their 
default values and click Create key pair. 

●​ Keep the .pem safe as this will be used to SSH into the AWS instances. 

Create a Security Group 

●​ Search for security groups. On the Security Group page, click on the Create security 
group button. 

 

●​ Name the new security group (e.g., MyFileServerSecurityGroup). 
●​ On the inbound rules, open TCP port 22 for SSH, TCP port 5001 (SERVER1), TCP port 

5002 (SERVER2). 
●​ For the demonstration, keep Source = Anywhere. 



●​ On the outbound rules, allow all traffic.​

 
●​ Create a security group. Once the group is created, it should look somewhat like the 

example shown below:​

 
●​ This security group will be shared by Server 1, Server 2, and the Client. 

Launch EC2 instances 
●​ We will need at least three EC2 instances—one for the client and one for each of the 

two servers.  
●​ Let’s create three identical EC2 instances with the following details: 



​

 
●​ Go to EC2 Dashboard -> Instances -> Launch Instance. 

​

​
- Choose Ubuntu as the OS image.​
​
- Select Ubuntu 24.04 as the AMI. Select the instance type (t3.micro).​

 
●​ Select the previously created key pair. 



​

 
●​ Attach the created security group under Network settings. 

​

 



●​ Since we need three EC2 instances with the same base configurations, under 
Summary on the right hand side set the number of instances to 3. 

​

 
●​ Finally Click the Launch instance. 

​

 
 

●​ This will create three EC2 instances with the selected configurations. 
●​ After the instances are created, go to the EC2 page. You should be able to see all 

three instances running. 



​

 
●​ Name all the instances for easy identification. 

​

​
 

Record Public & Private IPs for all instances (used in scripts) 
●​ These addresses will be required later when we write the scripts to establish 

communication between the client and the servers. 
●​ In this case, the following are the Private and Public IPs of each instance:​

​
 



SSH & Install the necessary tools 
●​ First, we need to change the file permissions of the key pair file (downloaded in one 

of the previous steps) by running the following command. 
chmod 400 ~/Downloads/MyFileSystemKeyPair.pem 

●​ The sample SSH command will be lie: 
ssh -i ~/Downloads/MyFileSystemKeyPair.pem ubuntu@<EC2 Public IPv4 Addr> 

●​ Let’s SSH into the Client-Node and install the necessary packages: 
~$ ssh -i ~/Downloads/MyFileSystemKeyPair.pem ubuntu@18.130.101.24​
ubuntu@ip-172-31-24-111:~$ sudo apt update​
ubuntu@ip-172-31-24-111:~$ sudo apt install netcat-openbsd -y​
ubuntu@ip-172-31-24-111:~$ which nc​
/usr/bin/nc 

●​ Similarly, SSH into the Server 1 instance and run the commands 
~$ ssh -i ~/Downloads/MyFileSystemKeyPair.pem ubuntu@18.171.162.167​
~$ sudo apt update​
~$ sudo apt install netcat-openbsd -y​
~$ which nc​
/usr/bin/nc 

●​ Follow the exact set of steps for Server 2 as well. 
~$ ssh -i ~/Downloads/MyFileSystemKeyPair.pem ubuntu@18.130.207.66​
~$ sudo apt update​
~$ sudo apt install netcat-openbsd -y​
~$ which nc​
/usr/bin/nc 

●​ Now, all three instances are configured and ready for a quick connectivity check. 

Connectivity check 
●​ Before we move into the actual File Service server implementation, let’s check the 

connections between the instances to make sure everything is set up correctly.  
●​ Run the following on SERVER1: 

ubuntu@ip-172-31-26-202:~$ nc -l -p 5002 

●​ Then run the following on the CLIENT: 

ubuntu@ip-172-31-24-111:~$ echo "hello from CLIENT to SERVER1" | nc 

172.31.16.124 5002 

●​ You should be able to see the message from the client displayed on SERVER1: 

ubuntu@ip-172-31-16-124:~$ nc -l -p 5002​



hello from CLIENT to SERVER1 

●​ This confirms that the connection between the CLIENT-Node and SERVER1 is 
working correctly. We could also have used port 5001, since both ports 5001 and 
5002 are open for TCP connections. 

●​ You can repeat the same steps to test the connection between SERVER1 and 
SERVER2. 

2) Writing the CLIENT script 
The client.py program is the interface for users to request files from our distributed file 
service. Its job is simple: connect to SERVER1 (the coordinator), request a file, and handle 
the response. It doesn’t interact with SERVER2 directly — it trusts SERVER1 to coordinate 
and return the correct data. 

Protocol Overview 

When the client connects to SERVER1 on port 5001, it sends a request in the form: 

GET filename 

SERVER1 then processes the request — including checking with SERVER2 — and replies 
with a structured response, followed by file data if available. The client parses this response 
and prints the result.  

Expected responses from SERVER1 

●​ OK ONE <length> — a single version of the file follows. 
●​ OK BOTH <length1> <length2> — two versions follow (from SERVER1 and 

SERVER2). 
●​ ERROR NOTFOUND — the file doesn't exist on either server. 

Code Overview 

The script uses two helper functions: 

●​ recv_line(conn): Reads a line from the socket (used for headers). 
●​ recv_exact(conn, n): Reads exactly n bytes (used for file contents). 

Main execution flow 
1.​ Parses the filename from command-line args (defaults to "file1.txt"). 
2.​ Connects to SERVER1 over TCP. 
3.​ Send a GET request. 
4.​ Reads and interprets the response header. 



5.​ Receives and displays file data based on the response type. 

Source Code Listing 

#!/usr/bin/env python3​
# client.py​
import socket, sys​
​
SERVER1_IP = "172.31.16.124"  # <-- PUT SERVER1 PRIVATE IP HERE​
SERVER1_PORT = 5001​
filename = sys.argv[1] if len(sys.argv) > 1 else "file1.txt"​
​
def recv_line(conn):​
    buf = bytearray()​
    while True:​
        b = conn.recv(1)​
        if not b:​
            break​
        buf += b​
        if buf.endswith(b"\n"):​
            break​
    return bytes(buf).decode(errors="replace").rstrip("\n")​
​
def recv_exact(conn, n):​
    buf = bytearray()​
    while len(buf) < n:​
        chunk = conn.recv(n - len(buf))​
        if not chunk:​
            raise ConnectionError("socket closed while reading body")​
        buf += chunk​
    return bytes(buf)​
​
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:​
    s.connect((SERVER1_IP, SERVER1_PORT))​
    s.sendall(f"GET {filename}\n".encode())​
​
    header = recv_line(s)  # e.g., OK ONE <len> / OK BOTH <l1> <l2> / ERROR 

NOTFOUND​
    parts = header.split()​
    if parts[:2] == ["OK", "ONE"]:​
        length = int(parts[2]); data = recv_exact(s, length)​
        print("[CLIENT] Received ONE copy:")​
        print(data.decode(errors="ignore"))​



        # Optionally save:​
        # open("out_one.txt","wb").write(data)​
    elif parts[:2] == ["OK", "BOTH"]:​
        l1, l2 = int(parts[2]), int(parts[3])​
        d1 = recv_exact(s, l1); d2 = recv_exact(s, l2)​
        print("[CLIENT] Received BOTH copies:")​
        print("\n--- SERVER1 version ---\n", d1.decode(errors="ignore"))​
        print("\n--- SERVER2 version ---\n", d2.decode(errors="ignore"))​
        # Optionally save:​
        # open("out_server1.txt","wb").write(d1)​
        # open("out_server2.txt","wb").write(d2)​
    else:​
        print("[CLIENT]", header) 

3) Writing the SERVER1 script 
The server1.py program is the coordinator of our small distributed file service. Its job is 
simple to explain: it waits for clients to connect on port 5001, checks if the requested file 
exists locally, always asks SERVER2 for the same file, and then decides what to send back. 
Think of it as the “middle manager” — it doesn’t just rely on its own copy but always 
double-checks with SERVER2 before answering the client. 

How the conversation works 
When a client connects, it sends a request like GET file1.txt. SERVER1 then talks to 
SERVER2 in exactly the same way. If SERVER2 replies that the file exists, it also sends the 
file contents back; if not, it says NOTFOUND. Based on this exchange, SERVER1 then 
prepares its response for the client. 

Decision making 

●​ If both SERVER1 and SERVER2 have the file and their contents are identical, SERVER1 
keeps things efficient and returns just one copy. 

●​ If both servers have the file but the contents are different, SERVER1 sends both 
versions so the client can see the mismatch. 

●​ If only one of the two servers has the file, SERVER1 forwards that copy. 
●​ If neither server has it, SERVER1 sends back a simple “not found” error. 

Code Walkthrough  
The script uses helper functions to keep things tidy. read_local() looks up the file under 
~/file_storage on SERVER1. get_from_server2() connects out to SERVER2, asks for the 
same file, and collects the result. Once both responses are in, SERVER1 compares them and 



decides which of the send_one(), send_both(), or send_error() functions to use when 
replying to the client. 

Safety and Reliability 
The script is careful about what paths it accepts (so clients can’t wander outside the 
storage folder), it checks that full files are received before making decisions, and it catches 
errors so that one misbehaving server doesn’t crash the whole service. Logging messages 
such as “Versions differ → sent BOTH” make it easy to see what happened during each 
request. 

How to run it 
Before starting, the SERVER2_IP variable needs to be updated to the private IP of SERVER2. 
Once SERVER2 is already running, you can start this script on SERVER1 with the following 
command on the command prompt:  
ubuntu@ip-172-31-16-124:~$ ./server1.py  

[SERVER1] Listening on 0.0.0.0:5001 

 
It will sit listening on port 5001, handle each incoming client request, and coordinate with 
SERVER2 in the background. In short, SERVER1 is the smart middle layer: it listens, checks 
both sides, makes a fair decision, and keeps the client informed.  
Screenshot of running server1.py on EC2 instance:  
 

 

Source Code Listing 

#!/usr/bin/env python3​
import socket, os​
​
HOST = "0.0.0.0"​
PORT = 5001​
SERVER2_IP = "172.31.xx.yy"   # <-- replace with SERVER2 private IP​
SERVER2_PORT = 5002​
ROOT = os.path.expanduser("~/file_storage")​
​
def recv_line(conn):​
    buf = bytearray()​
    while True:​

http://server1.py


        b = conn.recv(1)​
        if not b: break​
        buf += b​
        if buf.endswith(b"\n"): break​
    return bytes(buf).decode(errors="replace").rstrip("\n")​
​
def recv_exact(conn, n):​
    buf = bytearray()​
    while len(buf) < n:​
        chunk = conn.recv(n - len(buf))​
        if not chunk: raise ConnectionError("socket closed early")​
        buf += chunk​
    return bytes(buf)​
​
def get_from_server2(filename: str) -> bytes | None:​
    try:​
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s2:​
            s2.connect((SERVER2_IP, SERVER2_PORT))​
            s2.sendall(f"GET {filename}\n".encode())​
            header = recv_line(s2)​
            if header == "NOTFOUND": return None​
            if header.startswith("FOUND "):​
                length = int(header.split()[1])​
                return recv_exact(s2, length)​
    except Exception as e:​
        print("[SERVER1] Error contacting SERVER2:", e)​
    return None​
​
def read_local(filename: str) -> bytes | None:​
    rel = filename.lstrip("/")​
    path = os.path.normpath(os.path.join(ROOT, rel))​
    if not path.startswith(ROOT): return None​
    if os.path.isfile(path):​
        with open(path, "rb") as f: return f.read()​
    return None​
​
def send_one(conn, data: bytes):​
    conn.sendall(f"OK ONE {len(data)}\n".encode() + data)​
​
def send_both(conn, d1: bytes, d2: bytes):​
    conn.sendall(f"OK BOTH {len(d1)} {len(d2)}\n".encode() + d1 + d2)​
​
def send_error(conn, msg="ERROR NOTFOUND"):​



    conn.sendall((msg + "\n").encode())​
​
def handle_client(conn, addr):​
    try:​
        line = recv_line(conn)​
        if not line.startswith("GET "):​
            send_error(conn, "ERROR BADREQUEST"); return​
        filename = line[4:].strip()​
        print(f"[SERVER1] CLIENT {addr} requested {filename}")​
​
        local = read_local(filename)​
        remote = get_from_server2(filename)​
​
        if local and remote:​
            if local == remote:​
                send_one(conn, local)​
                print("[SERVER1] Both matched → sent ONE")​
            else:​
                send_both(conn, local, remote)​
                print("[SERVER1] Versions differ → sent BOTH")​
        elif local:​
            send_one(conn, local)​
            print("[SERVER1] Only SERVER1 had it → sent ONE")​
        elif remote:​
            send_one(conn, remote)​
            print("[SERVER1] Only SERVER2 had it → sent ONE")​
        else:​
            send_error(conn)​
            print("[SERVER1] Not found on either")​
    except Exception as e:​
        print("[SERVER1] Error:", e)​
        try: send_error(conn, "ERROR INTERNAL")​
        except: pass​
​
def main():​
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s1:​
        s1.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)​
        s1.bind((HOST, PORT))​
        s1.listen()​
        print(f"[SERVER1] Listening on {HOST}:{PORT}")​
        while True:​
            conn, addr = s1.accept()​
            with conn: handle_client(conn, addr)​



​
if __name__ == "__main__":​
    main() 

4) Writing the SERVER2 script 
The server2.py program is a peer server. Its sole purpose is to serve file content to Server 
1 when requested. It doesn't communicate with the client directly, but rather acts as a data 
source within the distributed network. It listens for requests from server1 on port 5002. 

Code Walkthrough  
The script uses helper functions for the smooth and error free execution. It uses a 
recv_line function, which is used to receive the request from server1 and send the request 
as a string to the handle function which is responsible for reading the file path from the 
recv_line function and checks for the filename if it exists. Send_found responsible for 
sending the file to server1 if found and send_notfound to let server1 know no such file 
exists in server2. 

How to run it 
SERVER2 is defined to be  running on port 5002, you can start this script on SERVER2 with 
the following command on the command prompt:  
 
ubuntu@ip-172-31-31-119:~$ ./server2.py  

[SERVER2] Listening on 0.0.0.0:5002 

 
It will sit listening on port 5002, handle each incoming server1 request 
Screenshot of running SERVER2.py on EC2 instance:  

 

 

Source Code Listing 

#!/usr/bin/env python3​
import socket, os​
HOST = "0.0.0.0"​
PORT = 5002​
ROOT = os.path.expanduser("~/file_storage")​
​
def recv_line(conn):​



    buf = bytearray()​
    while True:​
        b = conn.recv(1)​
        if not b: break​
        buf += b​
        if buf.endswith(b"\n"): break​
    return bytes(buf).decode(errors="replace").rstrip("\n")​
​
def send_found(conn, data: bytes):​
   header = f"FOUND {len(data)}\n".encode()​
   conn.sendall(header + data)​
​
def send_notfound(conn):​
   conn.sendall(b"NOTFOUND\n")​
​
def handle(conn, addr):​
    try:​
        line = recv_line(conn)​
        if not line.startswith("GET "):​
            send_notfound(conn); return​
        rel = line[4:].strip().lstrip("/")​
        path = os.path.normpath(os.path.join(ROOT, rel))​
      ​
        if not path.startswith(ROOT):​
            send_notfound(conn); return​
        if os.path.isfile(path):​
            with open(path, "rb") as f: data = f.read()​
            send_found(conn, data)​
            print(f"[SERVER2] Sent {rel} ({len(data)} bytes) to {addr}")​
        else:​
            send_notfound(conn)                ​
            print(f"[SERVER2] {rel} not found for {addr}")​
        elif local:​
            send_one(conn, local)​
            print("[SERVER1] Only SERVER1 had it → sent ONE")​
        except Exception as e:​
            print("[SERVER2] Error:", e)​
​
def main():​
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:​
        s1.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)​
        s1.bind((HOST, PORT))​
        s1.listen()​



        print(f"[SERVER1] Listening on {HOST}:{PORT}")​
        while True:​
            conn, addr = s.accept()​
            with conn: handle_client(conn, addr)​
​
if __name__ == "__main__":​
    main() 

5) Testing  

Test Setup 
●​ Different files on SERVER1 and SERVER2 (initial state) → client receives BOTH copies 

(shows each version). 
●​ Identical files on both servers (edit SERVER2’s file to match SERVER1) → client 

receives ONE copy. 
●​ Nested path provided by client (e.g., docs/report.txt with different contents) → 

client receives BOTH copies. 

Client Machine Setup 
●​ Configured client machine with the PKF file. 
●​ Created a file client.py in /home/ubuntu on the client node. 

 



 

 

Server1 Setup 
1.​ Configured Server1 using the PKF file. 
2.​ Created a file server1.py in /home/ubuntu. 
3.​ Created a directory file_storage in /home/ubuntu. 
4.​ Created a file file1.txt inside /home/ubuntu/file_storage. 



 
 

 
 
 



 

 

Server2 Setup 
1.​ Configured Server2 using the PKF file. 
2.​ Created a file server2.py in /home/ubuntu. 
3.​ Created a directory file_storage in /home/ubuntu. 
4.​ Created a file file1.txt inside /home/ubuntu/file_storage. 

 
 



 
 

 
 



 
 

 
Update the SERVER2_IP variable in the server1.py script with the private IP address of 
Server2. 

 

 
 



 
 
 
Update the SERVER1_IP variable in the client.py script with the private IP address of 
Server1. 



 
 

Test Case1  

End-to-End Verification of Client–Server File Sync 

●​ Precondition 

○​ Server1 (server1.py) and Server2 (server2.py) are deployed and accessible 
from the Client. 

○​ client.py is configured to connect to both servers. 
○​ Test files are available on both the servers . 

●​ Test Steps 

○​ Start Server1 by running server1.py. 
○​ Start Server2 by running server2.py. 
○​ Start the Client by running client.py. 



○​ Initiate file synchronization from the client.​
 

●​ Expected Result 

○​ The client should successfully connect to both Server1 and Server2. 
○​ Files from the servers should be visible in the client’s file system after sync. 
○​ When file conflicts exist (e.g., identical files on both servers), synchronization 

should complete without data loss. 

 

 
 
 



 
 
 

Test Case2  

File Read Operation with Missing File on One Server 

●​ Precondition 

1.​ file1.txt exists on both Server1 and Server2. 
2.​ Client, Server1, and Server2 are configured properly with the Python scripts. 

●​ Test Steps 

1.​ Remove file1.txt from Server1. 
2.​ Execute the Python script (client.py)  from Client. 
3.​ Execute the Python script (server1.py) from Server1. 
4.​ Execute the Python script (server2.py)  from Server2. 

http://client.py
http://server1.py
http://server2.py


●​ Expected Result 

Since file1.txt is removed from Server1, the client should successfully read the file 
content from Server2 as per the configuration. 
 

 
 



 



 



 
 

Test Case3  

File Read Operation When File Missing on Both Servers 

●​ Precondition 

○​ file1.txt is not present on either Server1 or Server2. 
○​ Client, Server1, and Server2 are configured properly with the Python scripts. 

●​ Test Steps 

○​ Ensure file1.txt is deleted from Server1. 
○​ Ensure file1.txt is deleted from Server2. 
○​ Execute the Python script from the Client machine. 



●​ Expected Result 

○​ The client script should fail to retrieve the file from either server. 
○​ The client should display an error message “[CLIENT] ERROR NOTFOUND”. 

 

 



 
 

Test Case4  

File Read Operation When Servers Have Identical File  

Single Copy Sent by Server1 to client if files are identical both on Server 1 and Server 2. 

●​ Precondition 

○​ file1.txt exists on both Server1 and Server2 with identical content. 
○​ Client, Server1, and Server2 are configured properly with the Python scripts. 

●​ Test Steps 

○​ Keep file1.txt on Server1 and Server2 with the same content. 
○​ Execute the Python script from the Client machine. 
○​ Server1 should handle the client request and send one copy of file1.txt. 

●​ Expected Result 

○​ The client should successfully receive and read the file content from Server1. 
○​ The client should not receive duplicate copies, even though the file also 

exists on Server2. 
○​ Output should show the file content exactly once. 

Server1 Content: 
 



 
 
Server2 Content: 
 

 
 

 



Execute scripts client.py, server1.py & server2.py  
 

 
 

 
 

http://client.py
http://server1.py
http://server2.py


 


	 
	Distributed Computing Assignment  
	Language used for the Implementation 
	System Overview 
	Protocol 
	Step-by-Step Work Flow 
	1) Setting up the AWS infrastructure 
	Create key pairs 
	Create a Security Group 
	Launch EC2 instances 
	Record Public & Private IPs for all instances (used in scripts) 
	SSH & Install the necessary tools 
	Connectivity check 

	2) Writing the CLIENT script 
	Protocol Overview 
	Expected responses from SERVER1 
	Code Overview 
	Main execution flow 
	Source Code Listing 

	3) Writing the SERVER1 script 
	How the conversation works 
	Decision making 
	Code Walkthrough  
	Safety and Reliability 
	How to run it 
	Source Code Listing 

	4) Writing the SERVER2 script 
	Code Walkthrough  
	How to run it 
	Source Code Listing 

	5) Testing  
	Test Setup 
	Client Machine Setup 
	Server1 Setup 
	Server2 Setup 

	Test Case1  
	End-to-End Verification of Client–Server File Sync 
	●​Precondition 
	●​Test Steps 
	●​Expected Result 


	Test Case2  
	File Read Operation with Missing File on One Server 
	●​Precondition 
	●​Test Steps 
	●​Expected Result 


	Test Case3  
	File Read Operation When File Missing on Both Servers 
	●​Precondition 
	●​Test Steps 
	●​Expected Result 


	Test Case4  
	File Read Operation When Servers Have Identical File  
	●​Precondition 
	●​Test Steps 
	●​Expected Result 





