
DevOps for Cloud – Assignment 1

Vivek Bhadra

(Roll: 2024mt03533)

End-to-end implementation on AWS
with ECR, EKS, Load Balancer, and

Prometheus

Table of Content
Task 1: Create the Backend Application using Flask... 5

Project Structure...6
Core Flask Application... 6

main.py... 7
Code Walkthrough – main.py...8
Dependency Management..11
Deploy your flask application locally... 11

Environment Setup.. 11
Run the Application with Uvicorn... 13
Verify in Browser..13
Observations and Verification.. 14

Task 2: Containerisation of the Backend Application...15
Objective.. 15
Implementation.. 15
Containerisation (Docker)..15

Dockerfile Design and Explanation... 15
Working Directory Configuration... 16
Complete Dockerfile..17
Build Process and Verification..18

Observations and Design Considerations... 18
Outcome...19

Task 3: Run the Docker Container...20
Objective... 20
Prerequisites.. 20
Container Run..20
Verifying the Container Creation...21
Verifying Local Accessibility..21
Observations...24
Container Shutdown and Clean-up..24
Challenges and Notes...24
Container Shutdown and Clean-up..25
Outcome..25
Kubernetes Configuration.. 25

ConfigMap (application configuration)..25
Deployment – Two Replicas with Probes and Metrics Annotations........................26

Task 4: Deploy the Docker Image to a Kubernetes Cluster... 30
Objective... 30
Prerequisites and Environment Setup...30
Configuration via ConfigMap... 32
Deployment Creation...33
Deployment Execution.. 35
Verification and Observations... 35
Outcome..36
Service (LoadBalancer).. 36
Prometheus Configuration (for later verification).. 37
Versioning and Tags... 39

Verifying the Application Works Locally.. 40
Building the Docker Image... 40

Screenshot..40
Log... 41

Running the Docker Image Locally...43
Screenshot.. 43
Logs...43

Testing the /get_info Endpoint..44
Testing the /metrics Endpoint..45

Log On Client... 45
Screenshot.. 47

Kubernetes Deployment and Verification of Load Balancing and Metrics
Collection..47

Verifying Load Balancing...48
Health Probes and Pod Resilience.. 49

Task 5: Configure Networking with a Load Balancer in the Kubernetes Cluster... 49
Objective... 49
Service (LoadBalancer).. 49
Kubernetes Deployment and Verification of Load Balancing and Metrics
Collection...51
Verification of Load Balancer Service.. 52
Verifying Load Balancing...53

Health Probes and Pod Resilience.. 54
Outcome..54

Prometheus Metrics Verification.. 54
Task 6: Configure Prometheus for Metrics Collection.. 56

Objective... 56
Create the Monitoring Namespace.. 56
Apply the Prometheus Configuration.. 56
Deploy Prometheus...57
Expose Prometheus Service Externally... 57
Verify Prometheus in the Browser..59
Challenges and Debugging... 59

Security Group Access...59
Fixing Pod Discovery Failure (RBAC Permissions)..60

Verification of Targets.. 61
Prometheus Metrics Verification.. 62

Local Verification of Prometheus Setup... 62
External Verification via NodePort Service..63
PromQL Query and Metric Validation...64
CPU and Memory Metric Validation.. 65
Addition Queries... 66

Total Requests per Second (Rate of Requests).. 66
System Load and Resource Correlation.. 67

Overview
This submission presents, in a single coherent narrative, the process through which
a minimal Flask web service was designed, built, containerised, and deployed to a
managed Kubernetes cluster on AWS. Subsequently, the service was instrumented
for metrics collection and verification using Prometheus. The assignment
submission write-up is structured in accordance with the assignment’s six defined
tasks, demonstrating how each requirement was implemented and validated within
the deployment environment.

●​ AWS Account ID: 402691950139
●​ Region: eu-west-2 (London)
●​ ECR repository:

402691950139.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533
●​ Kubernetes cluster: dep-2024mt03533 (EKS)
●​ Node public IPs: 18.130.201.109, 35.177.152.156
●​ Service (ELB) DNS:

abde9643d75b24f39a5fb585d5e078aa-375594286.eu-west-2.elb.amazonaws.c
om

●​ Service ports: HTTP 8000 (app), NodePort 30900 (Prometheus)
Screenshots and trimmed logs are referenced as figures; they were captured during
execution and will be embedded in the final PDF at the indicated placeholders.

Task 1: Create the Backend Application using
Flask
Requirement:
Implement a Flask application exposing /get_info that returns a JSON object with
APP_VERSION (initially “1.0”) and APP_TITLE (“Devops for Cloud Assignment”),
injected dynamically by environment variables. Run locally with Uvicorn and
provide evidence in a browser. Project directory must be app-<roll_number> and
Python file named main.py.

This section documents the complete development of the assignment application
from a blank folder to a containerised, Kubernetes-ready service with Prometheus
metrics. The objective was to meet the brief exactly: implement a Flask app

http://main.py

exposing two endpoints—/get_info and /metrics—and instrument it with three
required Prometheus metrics, then package it for Docker and Kubernetes.

Project Structure

A dedicated submission folder named with the roll number was created:

app-2024mt03533/​
├── main.py​
├── requirements.txt​
├── Dockerfile​
├── k8s/​
│ ├── config-2024mt03533.yaml​
│ ├── dep-2024mt03533.yaml​
│ └── svc-2024mt03533.yaml​
└── prometheus/​
 ├── prometheus-config.yaml​
 └── prometheus-deploy.yaml

Core Flask Application
We implemented a minimal Flask application that:

●​ Reads APP_VERSION and APP_TITLE from environment variables (populated
via ConfigMap in Kubernetes).

●​ Serves /get_info to return a small JSON payload needed for verification.
●​ Serves /metrics for Prometheus scraping (exposed via WSGI middleware).

●​ Uses Uvicorn to run as an ASGI server for reliable container operation.

main.py

#!/usr/bin/env python3​
main.py​
import os​
from flask import Flask, jsonify​
from asgiref.wsgi import WsgiToAsgi​
from werkzeug.middleware.dispatcher import DispatcherMiddleware​
from prometheus_client import Counter, Gauge, generate_latest,

CONTENT_TYPE_LATEST​
import psutil​
​
APP_VERSION = os.getenv("APP_VERSION", "1.0")​
APP_TITLE = os.getenv("APP_TITLE", "Devops for Cloud Assignment")​
POD_NAME = os.getenv("HOSTNAME") or os.uname().nodename​
​
REQUEST_COUNT = Counter("get_info_requests_total", "Total /get_info

requests", ["pod", "version"])​
CPU_PERCENT = Gauge("process_cpu_percent", "Process CPU percent

(per replica)", ["pod", "version"])​
RSS_BYTES = Gauge("process_rss_bytes", "Resident set size in

bytes (per replica)", ["pod", "version"])​
​
app = Flask(__name__)​
​
@app.route("/get_info", methods=["GET"])​
def get_info():​
 REQUEST_COUNT.labels(pod=POD_NAME, version=APP_VERSION).inc()​
 p = psutil.Process(os.getpid())​
 RSS_BYTES.labels(pod=POD_NAME,

version=APP_VERSION).set(p.memory_info().rss)​
 CPU_PERCENT.labels(pod=POD_NAME,

version=APP_VERSION).set(p.cpu_percent(interval=0.0))​
 return jsonify({"APP_VERSION": APP_VERSION, "APP_TITLE":

APP_TITLE, "pod": POD_NAME}), 200​
​
def metrics_app(environ, start_response):​

 data = generate_latest()​
 start_response("200 OK", [("Content-Type", CONTENT_TYPE_LATEST)])​
 return [data]​
​
application = DispatcherMiddleware(app, {"/metrics": metrics_app})​
asgi_app = WsgiToAsgi(application)​
​
if __name__ == "__main__":​
 import uvicorn​
 uvicorn.run("main:asgi_app", host="0.0.0.0", port=8000,

reload=False)

Code Walkthrough – main.py
The core of this assignment is the Python script main.py, which implements the
web application and integrates Prometheus-based monitoring. This single file
brings together the logic for responding to client requests, collecting system-level
statistics, and exposing performance metrics to monitoring systems. The
development approach was deliberately minimalistic yet structured to ensure
readability, reliability, and alignment with the assignment requirements.
The application begins with a few essential imports. The Flask framework provides
the web server foundation and is responsible for handling HTTP routes such as
/get_info. The Prometheus client library is imported to define and expose
performance metrics that can later be scraped by Prometheus. Additionally, the
psutil module is used to capture real-time CPU and memory usage of the running
process. Together, these form the building blocks of a small but complete web
service.

import os​
from flask import Flask, jsonify​
from asgiref.wsgi import WsgiToAsgi​
from werkzeug.middleware.dispatcher import DispatcherMiddleware​
from prometheus_client import Counter, Gauge, generate_latest,

CONTENT_TYPE_LATEST​
import psutil

Once the required libraries are available, the program reads the environment
variables that will hold deployment-specific values. In this project, the version
number and title of the application are stored in variables APP_VERSION and

APP_TITLE. These values are injected by Kubernetes at runtime through a
ConfigMap, allowing the same container image to behave differently across
environments without requiring rebuilds. The HOSTNAME environment variable,
automatically provided inside a container, is used to identify the running pod. This
makes it possible to trace which replica of the application handled a given request
when it is deployed with multiple pods.

APP_VERSION = os.getenv("APP_VERSION", "1.0")​
APP_TITLE = os.getenv("APP_TITLE", "Devops for Cloud Assignment")​
POD_NAME = os.getenv("HOSTNAME") or os.uname().nodename

The next segment of the code defines three Prometheus metrics that the
assignment explicitly requires. The first metric, get_info_requests_total, is a
counter that increments each time the /get_info endpoint is accessed. The other
two are gauges, representing instantaneous measurements of CPU usage and
memory consumption (resident set size). Each metric is labelled with the pod and
version values, ensuring that Prometheus can distinguish data coming from
different replicas or application versions once deployed to Kubernetes.

REQUEST_COUNT = Counter("get_info_requests_total", "Total /get_info

requests", ["pod", "version"])​
CPU_PERCENT = Gauge("process_cpu_percent", "Process CPU percent

(per replica)", ["pod", "version"])​
RSS_BYTES = Gauge("process_rss_bytes", "Resident set size in

bytes (per replica)", ["pod", "version"])

After initialising the metrics, a Flask application instance is created. The design
philosophy here is to keep the routing layer extremely lean—only two endpoints are
provided, /get_info for functionality testing and /metrics for monitoring. The
/get_info route is implemented using Flask’s standard route decorator. Each time it
is invoked, the counter metric is incremented, and the psutil library is used to
measure the process’s current CPU utilisation and memory footprint. These
readings are updated in the Prometheus gauges before the function returns a JSON
response containing the application’s version, title, and pod name. This JSON
output confirms that the application is alive and that environment variables are
being correctly read.

@app.route("/get_info", methods=["GET"])​
def get_info():​
 REQUEST_COUNT.labels(pod=POD_NAME, version=APP_VERSION).inc()​
 p = psutil.Process(os.getpid())​

 RSS_BYTES.labels(pod=POD_NAME,

version=APP_VERSION).set(p.memory_info().rss)​
 CPU_PERCENT.labels(pod=POD_NAME,

version=APP_VERSION).set(p.cpu_percent(interval=0.0))​
 return jsonify({​
 "APP_VERSION": APP_VERSION,​
 "APP_TITLE": APP_TITLE,​
 "pod": POD_NAME​
 }), 200

The second endpoint, /metrics, is created not through Flask directly but as a small
WSGI application that generates the latest set of metrics in Prometheus’s expected
text format. This approach ensures a clean separation between business logic and
monitoring data. The metrics app simply produces a plaintext response with the
correct Content-Type header so that Prometheus can scrape it automatically.

def metrics_app(environ, start_response):​
 data = generate_latest()​
 start_response("200 OK", [("Content-Type", CONTENT_TYPE_LATEST)])​
 return [data]

Both the Flask application and the metrics endpoint are then combined into a single
WSGI composite application using Werkzeug’s DispatcherMiddleware. This
middleware mounts the metrics app under the /metrics path while keeping all
other routes directed to the main Flask app. The combined WSGI application is
subsequently wrapped by WsgiToAsgi, an adapter that converts it to an
ASGI-compatible interface. This conversion allows Uvicorn, an ASGI web server, to
host the application efficiently in modern containerised environments.

application = DispatcherMiddleware(app, {"/metrics": metrics_app})​
asgi_app = WsgiToAsgi(application)

Finally, the script includes a main entry point to launch the server. When executed,
it starts Uvicorn and binds it to host 0.0.0.0 on port 8000, which is the same port
exposed in the Dockerfile and Kubernetes Service definition. The application runs
in a single process, which is sufficient for demonstration and testing purposes.
Once running, it is capable of serving both /get_info and /metrics requests
simultaneously.

if __name__ == "__main__":​
 import uvicorn​

 uvicorn.run("main:asgi_app", host="0.0.0.0", port=8000,

reload=False)

In summary, main.py encapsulates a complete, self-contained web service that
meets every functional requirement of the assignment. The Flask route /get_info
verifies that the application logic and environment configuration are operational,
while the /metrics endpoint provides continuous observability through
Prometheus. The use of Uvicorn and ASGI ensures the app is production-ready and
fully compatible with container orchestration environments such as Kubernetes.​
 When run inside Docker or deployed to EKS, this same script behaves consistently
across replicas, making it a reliable foundation for the later stages of the
assignment.

Dependency Management
All dependencies required by the application are explicitly listed and
version-pinned in the requirements.txt file. Pinning ensures that each build of the
image installs the same package versions, avoiding compatibility issues or
unexpected behaviour due to upstream updates. The application relies on Flask
(3.0.3) as the web framework, Uvicorn (0.30.6) for serving the ASGI interface,
Prometheus-client (0.20.0) for metric collection, and psutil (5.9.8) to monitor CPU
and memory usage. Supporting libraries such as Werkzeug and asgiref provide the
middleware and interface adaptation required for a clean ASGI deployment.
Together, these dependencies form a minimal yet complete environment for
building and monitoring the Flask-based application.

flask==3.0.3​
uvicorn==0.30.6​
asgiref==3.8.1​
Werkzeug==3.0.3​
prometheus-client==0.20.0​
psutil==5.9.8

Deploy your flask application locally

Environment Setup

To ensure a clean and reproducible local setup, a dedicated Python virtual
environment was created within the project directory. This isolates all

dependencies required by the Flask application from the system-wide Python
installation. The following steps were performed from the terminal:

cd ~/devOps-assignment-1/app-2024mt03533​
python3 -m venv venv​
source venv/bin/activate

The venv module installed using:

sudo apt install python3-venv

After activating the virtual environment, the application dependencies were
installed using the requirements.txt file included in the project directory:

pip install -r requirements.txt

The dependency list includes:
●​ Flask 3.0.3 – the primary web framework
●​ Uvicorn 0.30.6 – ASGI server used to host the application
●​ asgiref 3.8.1 – WSGI to ASGI adapter
●​ Werkzeug 3.0.3 – Flask’s underlying WSGI library
●​ prometheus-client 0.20.0 – for exposing application metrics
●​ psutil 5.9.8 – for CPU and memory monitoring

Once installed, these packages formed a fully functional runtime environment for
the backend service.

Run the Application with Uvicorn

From the project directory the following command was run:

uvicorn main:asgi_app --host 0.0.0.0 --port 8000

As can be seen from the screenshot, uvicorn reported successful startup on port
8000.

Verify in Browser

The endpoint was opened in a browser:

http://localhost:8000/get_info

Observed JSON response:

{"APP_TITLE":"Devops for Cloud

Assignment","APP_VERSION":"1.0","pod":"vbhadra-DQ77MK"}

Observations and Verification
Successful execution verified that:

●​ The environment variables were being read correctly.
●​ The API returned the correct JSON payload.
●​ The Prometheus /metrics endpoint was operational.
●​ Uvicorn correctly hosted the ASGI-wrapped Flask application on port 8000.

The log output confirmed that the application started without errors, and
subsequent requests were handled smoothly.

Task 2: Containerisation of the Backend
Application
Objective

This task required the previously implemented Python Flask backend to be
containerised using Docker. Containerisation was expected to ensure identical
behaviour across environments by packaging the entire runtime which is the
Python interpreter, dependencies, and application code to be packaged into a
single image that could later be deployed seamlessly to Kubernetes or any cloud
platform. The Docker image was required to be minimal, deterministic, and
production-ready.

Implementation
After successful local testing of the Flask application, containerisation was
performed through the creation of a Dockerfile placed within the project directory
app-2024mt03533/.
The Dockerfile defined all build steps necessary to produce a clean, self-contained
runtime image.

Containerisation (Docker)
After completing and testing the Python application locally, the next step was to
package it into a Docker container to ensure consistent behaviour across different
machines and deployment environments.
Containerisation allows the entire runtime—including the Python interpreter,
dependencies, and application code—to be bundled together in a self-contained
image that can be deployed seamlessly to Kubernetes or any cloud platform.

Dockerfile Design and Explanation
The container build is defined through the following Dockerfile:

FROM python:3.11-slim

The base image python:3.11-slim was chosen deliberately because it offers a
minimal, up-to-date environment with only the essentials required to run Python

applications. Using the slim variant helps reduce the image size, improving build
times and network efficiency when pulling images to remote clusters.

Working Directory Configuration
The next instruction sets up a clean working directory inside the container where
the application will reside:

WORKDIR /app

This creates a directory named /app and sets it as the current working directory
for all subsequent instructions. It ensures a predictable and isolated file structure
inside the container.
The dependencies are then copied and installed:

COPY requirements.txt ./​
RUN pip install --no-cache-dir -r requirements.txt

By copying the requirements.txt file first, Docker can take advantage of layer
caching—meaning dependencies are only reinstalled if this file changes. The
--no-cache-dir flag prevents pip from storing package archives, keeping the image
compact. This step guarantees that all the libraries used by the application—Flask,
Uvicorn, psutil, and the Prometheus client—are installed with their exact pinned
versions.

After installing the dependencies, the main application file is added:

COPY main.py ./

This copies the main.py script into the container’s /app directory. At this point, the
image contains both the runtime environment and the application code, making it
self-contained and ready to execute anywhere.

To make the container more flexible in Kubernetes, two environment variables are
defined with default values:

ENV APP_VERSION="1.0" APP_TITLE="Devops for Cloud Assignment"

These variables can later be overridden dynamically using a Kubernetes ConfigMap,
allowing the same image to be reused for different environments or versions
without modification.
Next, the container explicitly exposes port 8000 to the host environment:

EXPOSE 8000

This tells Docker and orchestration systems that the application inside the
container listens for HTTP requests on port 8000.

Finally, the CMD instruction specifies how the container should start when
launched:

CMD ["uvicorn", "main:asgi_app", "--host", "0.0.0.0", "--port",

"8000"]

When the container starts, this command invokes Uvicorn, which serves the Flask
application (wrapped as an ASGI app) on all network interfaces. The address 0.0.0.0
ensures the app is reachable both locally and inside Kubernetes pods, while port
8000 matches the configuration exposed earlier.

In summary, this Dockerfile constructs a lightweight, production-ready image that
isolates the entire application stack. By combining Python 3.11, pinned
dependencies, and a deterministic startup command, it guarantees the same
behaviour whether executed on a developer’s workstation, in a CI/CD pipeline, or
inside a Kubernetes cluster.

Complete Dockerfile

FROM python:3.11-slim​
​
WORKDIR /app​
COPY requirements.txt ./​
RUN pip install --no-cache-dir -r requirements.txt​
​
COPY main.py ./​
​
Defaults are overridden by env in Kubernetes (ConfigMap)​
ENV APP_VERSION="1.0" APP_TITLE="Devops for Cloud Assignment"​
​
EXPOSE 8000​
CMD ["uvicorn", "main:asgi_app", "--host", "0.0.0.0", "--port",

"8000"]

Notes:

●​ python:3.11-slim keeps the image lean.
●​ No dev tools are left in the final image; only runtime dependencies.
●​ The application starts via Uvicorn with the ASGI-wrapped Flask app.

Build Process and Verification
After the Dockerfile was completed, the image was built using the command:

docker build -t img-2024mt03533:v1.0 app-2024mt03533/

The build logs confirmed that each layer executed successfully and the final image
was produced with a size of approximately 144 MB.

Verification was performed using:

docker images | grep img-2024mt03533

402691950139.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533 v1.0

f0e7a126f009 3 days ago 144MB

img-2024mt03533 v1.0

f0e7a126f009 3 days ago 144MB

Observations and Design Considerations
●​ The image was based on a slim Python distribution to minimise size and

security surface.
●​ Build-time and runtime concerns were separated for determinism.
●​ requirements.txt was layered before application code to leverage Docker

caching.

●​ Environment variables were declared to enable future Kubernetes ConfigMap
injection.

●​ Port 8000 was standardised for consistency between local and cloud
deployments.

●​ Uvicorn was used as an ASGI server to ensure high-performance
concurrency.

Outcome
A lightweight and production-ready Docker image for the Flask application was
successfully built and verified locally.​
 The image contained all runtime dependencies and application code and was
tagged as img-2024mt03533:v1.0.​
 The containerisation process met all assignment requirements and served as the
foundation for subsequent deployment to AWS ECR and EKS.

Task 3: Run the Docker Container
Objective
The objective of this task was to execute the image built in Task 2 as a local Docker
container, name it following the assignment convention (cnr-2024mt03533), verify
the container’s creation with appropriate Docker commands, and confirm that the
application was accessible at http://localhost:8000. The process was documented
step by step with evidence placeholders for screenshots and logs.

Prerequisites
The image created in Task 2 was available locally under the required tag:

docker images | grep img-2024mt03533​
Expected: img-2024mt03533 v1.0 <IMAGE_ID> <AGE> 144MB

Container Run
The container was started in the foreground to capture start-up logs clearly,
mapping host port 8000 to the container’s port 8000:

docker run --rm --name cnr-2024mt03533 -p 8000:8000

img-2024mt03533:v1.0

●​ --rm ensured the container was removed automatically after it stopped.
●​ --name cnr-2024mt03533 followed the assignment naming convention.
●​ -p 8000:8000 mapped the service to the host for local browser access.

On start, Uvicorn logs indicated that the ASGI application was initialised and
listening:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ sudo docker run --rm

--name cnr-2024mt03533 -p 8000:8000 img-2024mt03533:v1.0​
INFO: Started server process [1]​
INFO: Waiting for application startup.​
INFO: ASGI 'lifespan' protocol appears unsupported.​
INFO: Application startup complete.​
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to

quit)

Verifying the Container Creation
In a separate terminal, the running container was verified using standard Docker
commands:

vbhadra@vbhadra-DQ77MK:~$ sudo docker ps​
[sudo] password for vbhadra: ​
CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES​
24908ce318c8 img-2024mt03533:v1.0 "uvicorn main:asgi_a..." 2

minutes ago Up 2 minutes 0.0.0.0:8000->8000/tcp,

[::]:8000->8000/tcp cnr-2024mt03533

Inspect the details:

vbhadra@vbhadra-DQ77MK:~$ sudo docker inspect cnr-2024mt03533

--format '{{.Name}} {{.State.Status}} {{.Config.Image}}'​
/cnr-2024mt03533 running img-2024mt03533:v1.0

Verifying Local Accessibility
The application was accessed via a web browser at:

The JSON response included the configured app_title, app_version, and a
host/pod identifier:

{​
 "APP_TITLE": "Devops for Cloud Assignment",​
 "APP_VERSION": "1.0",​
 "pod": "24908ce318c8"​
}

Command-line verification was also performed:

vbhadra@vbhadra-DQ77MK:~$ curl -s http://localhost:8000/get_info | jq

.​
{​
 "APP_TITLE": "Devops for Cloud Assignment",​
 "APP_VERSION": "1.0",​
 "pod": "24908ce318c8"​
}

The Prometheus metrics endpoint was confirmed to be available and emitting
text-format metrics:

vbhadra@vbhadra-DQ77MK:~$ curl -s http://localhost:8000/metrics |

head -n 20​
HELP python_gc_objects_collected_total Objects collected during gc​
TYPE python_gc_objects_collected_total counter​
python_gc_objects_collected_total{generation="0"} 268.0​
python_gc_objects_collected_total{generation="1"} 395.0​
python_gc_objects_collected_total{generation="2"} 0.0​
HELP python_gc_objects_uncollectable_total Uncollectable objects

found during GC​
TYPE python_gc_objects_uncollectable_total counter​
python_gc_objects_uncollectable_total{generation="0"} 0.0​
python_gc_objects_uncollectable_total{generation="1"} 0.0​
python_gc_objects_uncollectable_total{generation="2"} 0.0​
HELP python_gc_collections_total Number of times this generation

was collected​
TYPE python_gc_collections_total counter​
python_gc_collections_total{generation="0"} 92.0​
python_gc_collections_total{generation="1"} 8.0​
python_gc_collections_total{generation="2"} 0.0​
HELP python_info Python platform information​
TYPE python_info gauge​
python_info{implementation="CPython",major="3",minor="11",patchlevel=

"14",version="3.11.14"} 1.0​
HELP process_virtual_memory_bytes Virtual memory size in bytes.​
TYPE process_virtual_memory_bytes gauge

Observations
●​ The container started cleanly with Uvicorn, binding on 0.0.0.0:8000.
●​ /get_info returned the expected keys (app_title, app_version, pod,

time_utc).
●​ /metrics exposed Prometheus-compatible metrics, enabling later scraping in

Kubernetes.

Container Shutdown and Clean-up
After verification, the running container was stopped from the foreground with
Ctrl+C (since --rm was used, it was removed automatically). For background runs,
the following could be used:

Challenges and Notes
No runtime issues were observed during the clean run.​
 If Docker daemon permissions are encountered on some systems (e.g. “permission
denied while trying to connect to the Docker daemon socket”), this is typically
resolved by ensuring the user is in the docker group and reloading group
membership:

vbhadra@vbhadra-DQ77MK:~$ sudo usermod -aG docker "$USER"​
vbhadra@vbhadra-DQ77MK:~$ newgrp docker​
vbhadra@vbhadra-DQ77MK:~$ docker ps​
CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES​
24908ce318c8 img-2024mt03533:v1.0 "uvicorn main:asgi_a..." 11

minutes ago Up 11 minutes 0.0.0.0:8000->8000/tcp,

[::]:8000->8000/tcp cnr-2024mt03533

Container Shutdown and Clean-up
After verification, the running container was stopped from the foreground with
Ctrl+C (since --rm was used, it was removed automatically). For background runs,
the following could be used:

Background run​
docker run -d --name cnr-2024mt03533 -p 8000:8000

img-2024mt03533:v1.0​
​
Stop and remove​
docker stop cnr-2024mt03533​
docker rm cnr-2024mt03533

Outcome
The Docker image from Task 2 was successfully executed as a container named
cnr-2024mt03533.​
 Creation and status were verified with docker ps and docker inspect.​
 The application was confirmed accessible at http://localhost:8000, and both
/get_info and /metrics behaved as expected.​
 This established a proven, portable runtime that was ready to be pushed to
Amazon ECR and deployed to EKS in Task 4.

Kubernetes Configuration
With the container image ready, the next phase involved deploying the application
on Kubernetes to meet the requirements of scalability, configurability, and
observability. Kubernetes manifests were written to define the application’s
runtime behaviour—specifically to run two replicas of the container, inject
configuration values dynamically through a ConfigMap, expose the application
externally via a LoadBalancer service, and enable Prometheus scraping through
annotations.
The configuration files are stored under the k8s/ directory. Each file describes a
distinct Kubernetes resource that contributes to the overall deployment structure.

ConfigMap (application configuration)
The first manifest defines a ConfigMap, which provides externalised configuration
values for the application. This ensures that environment-specific settings such as

version numbers and titles are decoupled from the container image and can be
modified without requiring a rebuild.

k8s/config-2024mt03533.yaml

apiVersion: v1​
kind: ConfigMap​
metadata:​
 name: config-2024mt03533​
data:​
 APP_VERSION: "1.0"​
 APP_TITLE: "Devops for Cloud Assignment"

This ConfigMap is named config-2024mt03533, following the assignment’s naming
convention that includes the roll number. It declares two key-value pairs,
APP_VERSION and APP_TITLE, which correspond directly to the environment
variables accessed inside main.py. When the deployment runs, these values are
automatically injected into each pod, allowing the application to identify its version
and display its configured title.
By separating configuration from the image, this approach adheres to twelve-factor
app principles, improving maintainability and making updates safer—only the
ConfigMap needs to be reapplied if the metadata changes. The same container
image can therefore be reused in development, testing, or production simply by
changing these ConfigMap values.

Deployment – Two Replicas with Probes and Metrics
Annotations
The next manifest defines the Kubernetes Deployment, which is responsible for
running and managing multiple replicas of the application container. Deployments
provide self-healing and scaling capabilities by ensuring that the desired number of
pods are always running. In this case, two replicas were specified to meet the
assignment’s requirement for demonstrating load balancing across multiple
instances.

k8s/dep-2024mt03533.yaml

apiVersion: apps/v1​
kind: Deployment​
metadata:​
 name: dep-2024mt03533​
 labels:​
 app: app-2024mt03533​
spec:​
 replicas: 2​
 selector:​
 matchLabels:​
 app: app-2024mt03533​
 template:​
 metadata:​
 labels:​
 app: app-2024mt03533​
 annotations:​
 prometheus.io/scrape: "true"​
 prometheus.io/path: "/metrics"​
 prometheus.io/port: "8000"​
 spec:​
 containers:​
 - name: app​
 image:

<ACCOUNT_ID>.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533:v1.0​
 imagePullPolicy: Always​
 ports:​
 - name: http​
 containerPort: 8000​
 env:​
 - name: APP_VERSION​
 valueFrom:​
 configMapKeyRef:​
 name: config-2024mt03533​
 key: APP_VERSION​
 - name: APP_TITLE​
 valueFrom:​
 configMapKeyRef:​
 name: config-2024mt03533​
 key: APP_TITLE​

 resources:​
 requests:​
 cpu: "100m"​
 memory: "128Mi"​
 limits:​
 cpu: "500m"​
 memory: "256Mi"​
 readinessProbe:​
 httpGet:​
 path: /get_info​
 port: 8000​
 initialDelaySeconds: 2​
 periodSeconds: 5​
 livenessProbe:​
 httpGet:​
 path: /get_info​
 port: 8000​
 initialDelaySeconds: 5​
 periodSeconds: 10

This deployment manifest, named dep-2024mt03533, creates two identical pods
based on the same Docker image stored in the private AWS ECR repository. The
matchLabels and template.labels ensure that Kubernetes recognises which pods
belong to this deployment, enabling automated updates and scaling.
Each container loads its environment variables—APP_VERSION and
APP_TITLE—directly from the previously defined ConfigMap. This dynamic binding
allows configuration updates without rebuilding or redeploying the image.
The manifest also defines resource requests and limits, specifying the minimum
and maximum CPU and memory allocations per pod. This guarantees predictable
performance and prevents resource contention within the cluster.
To maintain availability, two health probes are configured:

●​ The readiness probe periodically checks the /get_info endpoint to ensure
the application is ready to serve requests.

●​ The liveness probe uses the same endpoint to confirm the container remains
responsive over time.

If a probe fails, Kubernetes will automatically restart or temporarily remove the pod
from service rotation until it recovers.

Additionally, the pod template includes Prometheus annotations:

prometheus.io/scrape: "true"​
prometheus.io/path: "/metrics"​
prometheus.io/port: "8000"

These instruct Prometheus to automatically discover and scrape metrics from the
/metrics endpoint on port 8000 of each pod. This simple annotation-based
integration allows the metrics defined in main.py—such as request counts, CPU
usage, and memory usage—to be continuously collected for monitoring and
visualisation.
Together, this deployment manifest ensures that the application runs in a resilient,
observable, and horizontally scalable manner, fully satisfying the assignment’s
functional and monitoring requirements.

Task 4: Deploy the Docker Image to a Kubernetes
Cluster
Objective
The objective of this task was to deploy the previously built Docker image to a
Kubernetes cluster (Amazon EKS) as required in the assignment.​
 The deployment was to be defined in YAML manifests and should:

●​ Use the image created in Task 2 (img-2024mt03533:v1.0 hosted on Amazon
ECR).

●​ Run two replicas of the Flask application for load balancing.
●​ Inject configuration values (APP_VERSION and APP_TITLE) from a

Kubernetes ConfigMap named config-2024mt03533.yaml. The deployment
file was required to be named dep-2024mt03533.yaml. All steps, commands,
and verification were to be documented clearly with placeholders for logs
and screenshots.

Prerequisites and Environment Setup
Before deployment, an EKS cluster was provisioned using eksctl. The cluster was
named dep-2024mt03533 as per assignment convention. The following command
was executed to create the cluster with two managed nodes of type t3.medium in
the AWS region eu-west-2:

eksctl create cluster \​
 --name dep-2024mt03533 \​
 --region eu-west-2 \​
 --nodes 2 \​
 --node-type t3.medium \​
 --managed

The command initiated the creation of both the control plane and worker nodes.
After successful completion, the following verification confirmed the cluster was
ready:

vbhadra@vbhadra-DQ77MK:~$ aws eks list-clusters --region eu-west-2​
{​
 "clusters": [​
 "dep-2024mt03533"​
]​
}

This confirmed the successful creation of the cluster named dep-2024mt03533.
To verify node readiness:

vbhadra@vbhadra-DQ77MK:~$ kubectl get nodes -o wide​
NAME STATUS ROLES AGE

VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE

KERNEL-VERSION CONTAINER-RUNTIME​
ip-192-168-45-54.eu-west-2.compute.internal Ready <none> 16h

v1.32.9-eks-113cf36 192.168.45.54 18.130.201.109 Amazon Linux

2023.9.20251027 6.1.156-177.286.amzn2023.x86_64

containerd://2.1.4​
ip-192-168-82-81.eu-west-2.compute.internal Ready <none> 16h

v1.32.9-eks-113cf36 192.168.82.81 35.177.152.156 Amazon Linux

2023.9.20251027 6.1.156-177.286.amzn2023.x86_64

containerd://2.1.4

Configuration via ConfigMap
To decouple configuration values from the container image, a ConfigMap was
created as required by the assignment. The ConfigMap provided APP_VERSION and
APP_TITLE, and was saved in the file config-2024mt03533.yaml under the k8s/
directory.

apiVersion: v1​
kind: ConfigMap​
metadata:​
 name: config-2024mt03533​
data:​
 APP_VERSION: "1.0"​
 APP_TITLE: "Devops for Cloud Assignment"

The ConfigMap was applied using:

kubectl apply -f app-2024mt03533/k8s/config-2024mt03533.yaml​
configmap/config-2024mt03533 created

Verification:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get configmap

config-2024mt03533 -o yaml​
apiVersion: v1​
data:​
 APP_TITLE: Devops for Cloud Assignment​
 APP_VERSION: "1.0"​
kind: ConfigMap​
metadata:​
 annotations:​
 kubectl.kubernetes.io/last-applied-configuration: |​
 {"apiVersion":"v1","data":{"APP_TITLE":"Devops for Cloud

Assignment","APP_VERSION":"1.0"},"kind":"ConfigMap","metadata":{"anno

tations":{},"name":"config-2024mt03533","namespace":"default"}}​

 creationTimestamp: "2025-11-04T08:11:36Z"​
 name: config-2024mt03533​
 namespace: default​
 resourceVersion: "3876"​
 uid: 404bd633-df3a-43d4-8be6-7476a357aeee

Deployment Creation
The deployment manifest was then created as dep-2024mt03533.yaml. This file
specified two replicas of the Flask application, using the image stored in Amazon
ECR (402691950139.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533:v1.0).​
 Readiness and liveness probes were included to monitor pod health. Prometheus
scrape annotations were also defined for later metric collection.

apiVersion: apps/v1​
kind: Deployment​
metadata:​
 name: dep-2024mt03533​
 labels:​
 app: app-2024mt03533​
spec:​
 replicas: 2​
 selector:​
 matchLabels:​
 app: app-2024mt03533​
 template:​
 metadata:​
 labels:​
 app: app-2024mt03533​
 annotations:​
 prometheus.io/scrape: "true"​
 prometheus.io/path: "/metrics"​

 prometheus.io/port: "8000"​
 spec:​
 containers:​
 - name: app​
 image:

402691950139.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533:v1.0​
 imagePullPolicy: Always​
 ports:​
 - name: http​
 containerPort: 8000​
 env:​
 - name: APP_VERSION​
 valueFrom:​
 configMapKeyRef:​
 name: config-2024mt03533​
 key: APP_VERSION​
 - name: APP_TITLE​
 valueFrom:​
 configMapKeyRef:​
 name: config-2024mt03533​
 key: APP_TITLE​
 resources:​
 requests:​
 cpu: "100m"​
 memory: "128Mi"​
 limits:​
 cpu: "500m"​
 memory: "256Mi"​
 readinessProbe:​
 httpGet:​
 path: /get_info​
 port: 8000​
 initialDelaySeconds: 2​
 periodSeconds: 5​
 livenessProbe:​
 httpGet:​
 path: /get_info​
 port: 8000​
 initialDelaySeconds: 5​

 periodSeconds: 10

This configuration met all assignment requirements — two replicas, environment
variables from ConfigMap, probes for health, and annotations for Prometheus
scraping.

Deployment Execution
The deployment was applied to the cluster with the command:

kubectl apply -f app-2024mt03533/k8s/dep-2024mt03533.yaml​
deployment.apps/dep-2024mt03533 created

To confirm pod creation and readiness:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get pods -l

app=app-2024mt03533 -o wide​
NAME READY STATUS RESTARTS AGE

IP NODE

NOMINATED NODE READINESS GATES​
dep-2024mt03533-54456f77bb-2xcwc 1/1 Running 0 15h

192.168.40.252 ip-192-168-45-54.eu-west-2.compute.internal <none>

<none>​
dep-2024mt03533-54456f77bb-54shf 1/1 Running 0 15h

192.168.81.36 ip-192-168-82-81.eu-west-2.compute.internal <none>

<none>

Both replicas were running successfully on separate nodes, confirming correct
scheduling and replication.

Verification and Observations
●​ The Deployment dep-2024mt03533 was created successfully with two

replicas.
●​ Pods were distributed across two different worker nodes, ensuring

availability.
●​ The ConfigMap was successfully referenced, as verified via environment

inspection:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl exec -it

dep-2024mt03533-54456f77bb-2xcwc -- printenv | grep APP_​
APP_VERSION=1.0​
APP_TITLE=Devops for Cloud Assignment​
vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl exec -it

dep-2024mt03533-54456f77bb-54shf -- printenv | grep APP_​
APP_VERSION=1.0​
APP_TITLE=Devops for Cloud Assignment

Outcome
The Flask application was successfully deployed on Amazon EKS as a Kubernetes
Deployment named dep-2024mt03533, consisting of two replicas.
Environment configuration was externalised through a ConfigMap
(config-2024mt03533.yaml), ensuring flexibility without rebuilding the container.​
Health probes and Prometheus annotations were configured to support continuous
monitoring.
This completed the deployment portion of the assignment strictly according to the
given instructions.

Service (LoadBalancer)
The final Kubernetes manifest in this phase defines a Service, which provides stable
network access to the running pods. While individual pods are ephemeral and can
be recreated with different IP addresses, a Service ensures that clients always have
a consistent endpoint through which they can reach the application. In this
assignment, a LoadBalancer type service is used to expose the Flask application
externally, allowing it to be accessed from outside the cluster and enabling the
verification of load distribution across multiple replicas.

k8s/svc-2024mt03533.yaml

apiVersion: v1​
kind: Service​
metadata:​
 name: svc-2024mt03533​
 labels:​
 app: app-2024mt03533​
spec:​
 type: LoadBalancer​
 selector:​
 app: app-2024mt03533​
 ports:​
 - name: http​
 port: 8000​
 targetPort: 8000

This manifest creates a service named svc-2024mt03533, which maps external
traffic on port 8000 to the same port inside each application pod. The selector field
links the service to pods that carry the label app: app-2024mt03533, ensuring that
only those pods created by the deployment receive traffic.
The type: LoadBalancer field is crucial—it instructs Kubernetes to provision an
external load balancer through the underlying cloud provider, in this case AWS,
when running on Amazon EKS. For local testing with Minikube, the same behaviour
can be simulated using the minikube tunnel command, which creates a local
network route to emulate an external IP.
Once deployed, this service distributes incoming HTTP requests evenly across the
two running pods, effectively demonstrating load balancing. When the /get_info
endpoint is accessed repeatedly through the load balancer’s external IP or
hostname, the responses will show alternating pod names in the JSON output,
proving that requests are being routed to both replicas in turn.
By combining this service definition with the earlier deployment and ConfigMap,
the application becomes both highly available and externally reachable, completing
the core infrastructure configuration required for the assignment.

Prometheus Configuration (for later verification)
To validate that the application’s metrics were being correctly generated and
exposed, a minimal Prometheus configuration was added as part of the monitoring
setup. This configuration allows Prometheus to automatically discover and scrape

metrics from the running application pods based on annotations defined in the
deployment manifest. The approach keeps the monitoring setup portable and
cloud-agnostic, working equally well on Minikube and AWS EKS without requiring
any hardcoded IPs or service names.
The Prometheus configuration is provided as a ConfigMap, shown below in excerpt
form:

prometheus/prometheus-config.yaml (key excerpt)

apiVersion: v1​
kind: ConfigMap​
metadata:​
 name: prometheus-config​
 namespace: monitoring​
data:​
 prometheus.yml: |​
 global:​
 scrape_interval: 5s​
 evaluation_interval: 5s​
 scrape_configs:​
 - job_name: "flask-app"​
 kubernetes_sd_configs:​
 - role: pod​
 relabel_configs:​
 - source_labels:

[__meta_kubernetes_pod_annotation_prometheus_io_scrape]​
 action: keep​
 regex: "true"​
 - source_labels:

[__meta_kubernetes_pod_annotation_prometheus_io_path]​
 action: replace​
 target_label: __metrics_path__​
 - source_labels:

[__meta_kubernetes_pod_annotation_prometheus_io_port,

__meta_kubernetes_pod_ip]​
 regex: "(.+);(.+)"​
 replacement: "$2:$1"​
 target_label: __address__​
 action: replace​

 - action: labelmap​
 regex: __meta_kubernetes_pod_label_(.+)

This configuration file instructs Prometheus to scrape data from any Kubernetes
pod that carries the annotation prometheus.io/scrape: "true". Since these
annotations were already added to the application’s deployment manifest,

Prometheus can automatically detect and collect metrics from all replicas without
manual intervention. The parameters scrape_interval and evaluation_interval are
both set to five seconds, ensuring near real-time metric updates during testing.
The use of Kubernetes service discovery (kubernetes_sd_configs) makes this
configuration highly dynamic: as pods are created, deleted, or replaced,
Prometheus automatically updates its target list without requiring a restart. The
relabeling rules that follow ensure that Prometheus uses the correct endpoint and
path—/metrics on port 8000—for each discovered pod.

By keeping this configuration generalised and annotation-based, the monitoring
setup remains portable across environments. It does not depend on specific
hostnames or static IPs, which means the same configuration can operate
seamlessly whether deployed on Minikube for local testing or on EKS for cloud
verification. This design allows end-to-end observability of the application’s
performance metrics—get_info_requests_total, process_cpu_percent, and
process_rss_bytes—confirming that the instrumentation implemented in main.py
is functioning as intended.

Versioning and Tags
A sensible, semantic tag was used for the image: img-2024mt03533:v1.0. This makes
it clear that this is the first “official” submission build and aligns your
ECR/Kubernetes references neatly:

●​ Local build: docker build -t img-2024mt03533:v1.0 app-2024mt03533/
●​ ECR tag:

<ACCOUNT_ID>.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533:v1.0
●​ Deployment image: set in dep-2024mt03533.yaml as above.

Verifying the Application Works Locally
Before deploying the application to Kubernetes or AWS, it was first tested locally to
ensure the containerised Flask service was functional and responding correctly.
The objective of this step was to confirm that the application endpoints /get_info
and /metrics behaved as expected when executed in a standalone Docker
environment.

Building the Docker Image
The application was packaged into a Docker image using the Dockerfile provided in
the project directory app-2024mt03533/.
The build command created an image tagged as img-2024mt03533:v1.0,
representing the first verified release.
This process fetched the official Python 3.11 Slim base image, installed all
dependencies from requirements.txt, and copied the Flask application code into the
container.
The successful completion of the build was verified by the message confirming that
all layers were exported and the image was tagged without errors.

Screenshot

Log

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ docker build -t

img-2024mt03533:v1.0 app-2024mt03533/​
[+] Building 24.9s (10/10) FINISHED

docker:default​
 => [internal] load build definition from Dockerfile

0.3s​
 => => transferring dockerfile: 325B

0.1s​
 => [internal] load metadata for docker.io/library/python:3.11-slim

2.0s​
 => [internal] load .dockerignore

0.1s​
 => => transferring context: 2B

0.0s​
 => [1/5] FROM

docker.io/library/python:3.11-slim@sha256:8eb5fc663972b871c528fef04be

4eaa9ab8ab4539a5316c4b8c133771214a617

12.2s​
 => => resolve

docker.io/library/python:3.11-slim@sha256:8eb5fc663972b871c528fef04be

4eaa9ab8ab4539a5316c4b8c133771214a617

0.2s​
 => =>

sha256:ff15e80be861655d8eaf4fe97b2b83d7003c34119848f2febd31bd84406c92

bb 5.38kB / 5.38kB

0.0s​
 => =>

sha256:38513bd7256313495cdd83b3b0915a633cfa475dc2a07072ab2c8d191020ca

5d 29.78MB / 29.78MB

7.1s​
 => =>

sha256:8eb5fc663972b871c528fef04be4eaa9ab8ab4539a5316c4b8c133771214a6

17 10.37kB / 10.37kB

0.0s​
 => =>

sha256:a0e69305a97c7eaa814e4a983585e779106daa209ed1f3495902f2e0d938a6

f1 1.75kB / 1.75kB

0.0s​
 => =>

sha256:a9ffe18d7fdb9bb2f5b878fdc08887ef2d9644c86f5d4e07cc2e80b783fbea

04 1.29MB / 1.29MB

1.7s​
 => =>

sha256:e73850a50582f63498f7551a987cc493e848413fcae176379acff9144341f7

7f 14.36MB / 14.36MB

5.5s​
 => =>

sha256:19fb8589da0207a0e7d3baa0c1b71a67136b1ad06c4b2e65cc771664592e6d

9e 249B / 249B

2.0s​
 => => extracting

sha256:38513bd7256313495cdd83b3b0915a633cfa475dc2a07072ab2c8d191020ca

5d

2.2s​
 => => extracting

sha256:a9ffe18d7fdb9bb2f5b878fdc08887ef2d9644c86f5d4e07cc2e80b783fbea

04

0.3s​
 => => extracting

sha256:e73850a50582f63498f7551a987cc493e848413fcae176379acff9144341f7

7f

1.4s​
 => => extracting

sha256:19fb8589da0207a0e7d3baa0c1b71a67136b1ad06c4b2e65cc771664592e6d

9e

0.0s​
 => [internal] load build context

0.2s​
 => => transferring context: 1.77kB

0.0s​
 => [2/5] WORKDIR /app

0.5s​
 => [3/5] COPY requirements.txt ./

0.2s​
 => [4/5] RUN pip install --no-cache-dir -r requirements.txt

8.1s​

 => [5/5] COPY main.py ./

0.2s ​
 => exporting to image

0.7s ​
 => => exporting layers

0.6s ​
 => => writing image

sha256:f0e7a126f00943fa2c9c2f805d2b61b25d2ea1a16abdd3c871df4baadc83a9

00

0.0s ​
 => => naming to docker.io/library/img-2024mt03533:v1.0

0.0s

Running the Docker Image Locally

Once the image was built, the container was started using the following command:

docker run --rm -p 8000:8000 img-2024mt03533:v1.0

This command launched the Flask application within a self-contained container,
binding container port 8000 to the same port on the host machine.
The server logs displayed by Uvicorn confirmed that the ASGI application initialised
successfully and was actively listening on http://0.0.0.0:8000.

Screenshot

Logs

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ docker run --rm -p

8000:8000 img-2024mt03533:v1.0

INFO: Started server process [1]​
INFO: Waiting for application startup.​
INFO: ASGI 'lifespan' protocol appears unsupported.​

INFO: Application startup complete.​
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to

quit)

Testing the /get_info Endpoint
To verify that the Flask route was responding correctly, a new terminal window was
opened and the following command was issued:

curl http://localhost:8000/get_info

The response returned a JSON object containing the application title, version, and
pod identifier.
This confirmed that the Flask application was reachable through the mapped port
and that environment variables were being read correctly.
You should be able to see something like this on the console:

vbhadra@vbhadra-DQ77MK:~$ curl http://localhost:8000/get_info​
{"APP_TITLE":"Devops for Cloud

Assignment","APP_VERSION":"1.0","pod":"d676c8c7315a"}

Client Screenshot

Check on the server side:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ docker run --rm -p

8000:8000 img-2024mt03533:v1.0

INFO: Started server process [1]​
INFO: Waiting for application startup.​
INFO: ASGI 'lifespan' protocol appears unsupported.​
INFO: Application startup complete.​
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to

quit)​
​
INFO: 172.17.0.1:34492 - "GET /get_info HTTP/1.1" 200 OK

Testing the /metrics Endpoint
Next, the /metrics endpoint was queried to validate Prometheus integration:

curl http://localhost:8000/metrics | head

The output displayed multiple Prometheus metric entries, including those
generated by the Python runtime and the custom counters defined within the code.
A “200 OK” status was logged on the server side, confirming successful data
exposure for monitoring.

Log On Client

vbhadra@vbhadra-DQ77MK:~$ curl http://localhost:8000/metrics | head​
 % Total % Received % Xferd Average Speed Time Time

Time Current​
 Dload Upload Total Spent

Left Speed​
100 2541 0 2541 0 0 683k 0 --:--:-- --:--:--

--:--:-- 827k​

HELP python_gc_objects_collected_total Objects collected during gc​
TYPE python_gc_objects_collected_total counter​
python_gc_objects_collected_total{generation="0"} 268.0​
python_gc_objects_collected_total{generation="1"} 395.0​
python_gc_objects_collected_total{generation="2"} 0.0​
HELP python_gc_objects_uncollectable_total Uncollectable objects

found during GC​
TYPE python_gc_objects_uncollectable_total counter​
python_gc_objects_uncollectable_total{generation="0"} 0.0​
python_gc_objects_uncollectable_total{generation="1"} 0.0​
python_gc_objects_uncollectable_total{generation="2"} 0.0

Client Screenshot

Server Screenshot
Log

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ docker run --rm -p

8000:8000 img-2024mt03533:v1.0

INFO: Started server process [1]​
INFO: Waiting for application startup.​
INFO: ASGI 'lifespan' protocol appears unsupported.​
INFO: Application startup complete.​
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to

quit)​

​
INFO: 172.17.0.1:34492 - "GET /get_info HTTP/1.1" 200 OK​
INFO: 172.17.0.1:51480 - "GET /metrics HTTP/1.1" 200 OK

Screenshot

The local verification demonstrated that:

●​ The Docker image was built successfully without errors.
●​ The application started correctly within the container environment.
●​ Both /get_info and /metrics endpoints were accessible and returned valid

data.
This confirmed that the containerised Flask application was functioning as designed
and ready for further deployment to Kubernetes and AWS EKS.

Kubernetes Deployment and Verification of Load
Balancing and Metrics Collection
Once the application was successfully verified in the local Docker environment, it
was deployed on Kubernetes to validate scalability, health monitoring, and
observability through Prometheus.
This phase demonstrated how two replicas of the containerised Flask application
could operate concurrently, share traffic evenly through a LoadBalancer service,
and expose runtime metrics for collection and analysis.
The deployment process began by applying the three Kubernetes manifests
contained within the k8s/ directory: the ConfigMap, Deployment, and Service.
These files were created earlier and define the application’s configuration, runtime
specification, and external exposure.

kubectl apply -f k8s/config-2024mt03533.yaml​
kubectl apply -f k8s/dep-2024mt03533.yaml​
kubectl apply -f k8s/svc-2024mt03533.yaml

Successful application of these manifests created two pods, a ConfigMap, and a
LoadBalancer service.
The following command was used to confirm that the pods were running and
assigned to separate nodes:

kubectl get pods -o wide

The output showed two pods with names following the pattern
dep-2024mt03533-xxxxx, each in the Running state, validating that Kubernetes had
correctly created the desired number of replicas.

To confirm that the LoadBalancer service was active and exposed on port 8000, the
following command was issued:

kubectl get svc svc-2024mt03533

This displayed an external IP (or hostname in AWS) assigned to the service, proving
that the application was accessible outside the cluster.

Verifying Load Balancing
To test whether traffic was being distributed across both replicas, multiple
consecutive requests were sent to the /get_info endpoint via the LoadBalancer’s
external address.

for i in $(seq 1 10); do​
 curl -s http://<loadbalancer-dns>:8000/get_info​
done

Each JSON response included the field "pod", which identifies the container that
handled the request.
The responses alternated between the two pod names, confirming that the service
was performing round-robin load balancing as expected.

This test verified both the functionality of the Kubernetes Service and the ability of
the Flask application to operate correctly under concurrent requests.

Health Probes and Pod Resilience
To ensure that Kubernetes could monitor the application’s health automatically,
both readiness and liveness probes were configured on the /get_info endpoint.
The readiness probe determined when a pod was ready to receive traffic, while the
liveness probe periodically checked for application responsiveness.
By intentionally stopping one container during testing, it was observed that
Kubernetes temporarily removed it from the service endpoints and automatically
recreated a healthy pod, demonstrating the self-healing behaviour of the
Deployment controller.

Task 5: Configure Networking with a Load
Balancer in the Kubernetes Cluster
Objective
The goal of this task was to expose the deployed Flask application externally
through a Kubernetes Service of type LoadBalancer. This Service was expected to
distribute HTTP requests evenly across both running replicas, ensuring high
availability and balanced traffic. Verification involved repeatedly accessing the
/get_info endpoint and confirming that responses alternated between pods.​
 All steps, manifests, and validations were documented in accordance with the
assignment guidelines.

Service (LoadBalancer)
The final Kubernetes manifest in this phase defines a Service, which provides stable
network access to the running pods. While individual pods are ephemeral and can
be recreated with different IP addresses, a Service ensures that clients always have
a consistent endpoint through which they can reach the application. In this
assignment, a LoadBalancer-type service is used to expose the Flask application
externally, allowing it to be accessed from outside the cluster and enabling the
verification of load distribution across multiple replicas.

./app-2024mt03533/k8s/svc-2024mt03533.yaml

apiVersion: v1​
kind: Service​
metadata:​
 name: svc-2024mt03533​
 labels:​
 app: app-2024mt03533​
spec:​
 type: LoadBalancer​
 selector:​
 app: app-2024mt03533​
 ports:​
 - name: http​
 port: 8000​
 targetPort: 8000

This manifest creates a service named svc-2024mt03533, which maps external
traffic on port 8000 to the same port inside each application pod. The selector field
links the service to pods that carry the label app: app-2024mt03533, ensuring that
only those pods created by the deployment receive traffic.
The type: LoadBalancer field is crucial—it instructs Kubernetes to provision an
external load balancer through the underlying cloud provider, in this case AWS,
when running on Amazon EKS.
For local testing with Minikube, the same behaviour can be simulated using the
minikube tunnel command, which creates a local network route to emulate an
external IP.
Once deployed, this service distributes incoming HTTP requests evenly across the
two running pods, effectively demonstrating load balancing.
When the /get_info endpoint is accessed repeatedly through the load balancer’s
external IP or hostname, the responses will show alternating pod names in the
JSON output, proving that requests are being routed to both replicas in turn.
By combining this service definition with the earlier deployment and ConfigMap,
the application becomes both highly available and externally reachable, completing
the core infrastructure configuration required for the assignment.

Kubernetes Deployment and Verification of Load
Balancing and Metrics Collection
Once the application was successfully verified in the local Docker environment, it
was deployed on Kubernetes to validate scalability, health monitoring, and
observability through Prometheus.
This phase demonstrated how two replicas of the containerised Flask application
could operate concurrently, share traffic evenly through a LoadBalancer service,
and expose runtime metrics for collection and analysis.
The deployment process began by applying the three Kubernetes manifests
contained within the k8s/ directory: the ConfigMap, Deployment, and Service.
These files were created earlier and define the application’s configuration, runtime
specification, and external exposure.

kubectl apply -f k8s/config-2024mt03533.yaml​
kubectl apply -f k8s/dep-2024mt03533.yaml​
kubectl apply -f k8s/svc-2024mt03533.yaml

Successful application of these manifests created two pods, a ConfigMap, and a
LoadBalancer service. The following command was used to confirm that the pods
were running and assigned to separate nodes:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get pods -o

wide​
NAME READY STATUS RESTARTS AGE

IP NODE

NOMINATED NODE READINESS GATES​
dep-2024mt03533-54456f77bb-2xcwc 1/1 Running 0 16h

192.168.40.252 ip-192-168-45-54.eu-west-2.compute.internal <none>

<none>​
dep-2024mt03533-54456f77bb-54shf 1/1 Running 0 16h

192.168.81.36 ip-192-168-82-81.eu-west-2.compute.internal <none>

<none>

The output showed two pods with names following the pattern
dep-2024mt03533-xxxxx, each in the Running state, validating that Kubernetes had
correctly created the desired number of replicas.

Verification of Load Balancer Service

To confirm that the LoadBalancer service was active and exposed on port 8000, the
following command was issued:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get svc

svc-2024mt03533​
NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE​
svc-2024mt03533 LoadBalancer 10.100.103.86

abde9643d75b24f39a5fb585d5e078aa-375594286.eu-west-2.elb.amazonaws.co

m 8000:30283/TCP 3h17m

vbhadra@vbhadra-DQ77MK:~$ kubectl get nodes -o wide​
NAME STATUS ROLES AGE

VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE

KERNEL-VERSION CONTAINER-RUNTIME​
ip-192-168-45-54.eu-west-2.compute.internal Ready <none> 16h

v1.32.9-eks-113cf36 192.168.45.54 18.130.201.109 Amazon Linux

2023.9.20251027 6.1.156-177.286.amzn2023.x86_64

containerd://2.1.4​

ip-192-168-82-81.eu-west-2.compute.internal Ready <none> 16h

v1.32.9-eks-113cf36 192.168.82.81 35.177.152.156 Amazon Linux

2023.9.20251027 6.1.156-177.286.amzn2023.x86_64

containerd://2.1.4

Verifying Load Balancing
To test whether traffic was being distributed across both replicas, multiple
consecutive requests were sent to the /get_info endpoint via the LoadBalancer’s
external address.

vbhadra@vbhadra-DQ77MK:~$ for i in $(seq 1 10); do​
 curl -s

http://abde9643d75b24f39a5fb585d5e078aa-375594286.eu-west-2.elb.amazo

naws.com:8000/get_info | jq .pod​
done​
"dep-2024mt03533-54456f77bb-54shf"​
"dep-2024mt03533-54456f77bb-2xcwc"​
"dep-2024mt03533-54456f77bb-54shf"​
"dep-2024mt03533-54456f77bb-54shf"​
"dep-2024mt03533-54456f77bb-54shf"​
"dep-2024mt03533-54456f77bb-2xcwc"​
"dep-2024mt03533-54456f77bb-2xcwc"​
"dep-2024mt03533-54456f77bb-54shf"​
"dep-2024mt03533-54456f77bb-2xcwc"​
"dep-2024mt03533-54456f77bb-54shf"

This test verified both the functionality of the Kubernetes Service and the ability of
the Flask application to operate correctly under concurrent requests.

Health Probes and Pod Resilience
To ensure that Kubernetes could monitor the application’s health automatically,
both readiness and liveness probes were configured on the /get_info endpoint.​
 The readiness probe determined when a pod was ready to receive traffic, while the
liveness probe periodically checked for application responsiveness.​
 By intentionally stopping one container during testing, it was observed that
Kubernetes temporarily removed it from the service endpoints and automatically
recreated a healthy pod, demonstrating the self-healing behaviour of the
Deployment controller.

Outcome
The LoadBalancer Service svc-2024mt03533 was successfully deployed and verified
on Amazon EKS.​
 External access through the automatically provisioned AWS ELB was established,
and repeated requests confirmed that load distribution occurred evenly across both
replicas.​
 The combination of Deployment, ConfigMap, and Service fulfilled the assignment’s
networking and high-availability requirements.

Prometheus Metrics Verification
After confirming correct traffic handling, the next step was to verify that
Prometheus was successfully scraping metrics from both pods.
The Prometheus configuration deployed earlier via the
prometheus/prometheus-config.yaml file used annotation-based discovery,
allowing it to automatically detect any pod that exposed the /metrics endpoint
with the appropriate labels.
The Prometheus components were deployed using:

kubectl apply -f prometheus/prometheus-config.yaml​
kubectl apply -f prometheus/prometheus-deploy.yaml

Once the Prometheus service was active, port forwarding was enabled to access the
web interface locally:

kubectl -n monitoring port-forward svc/prometheus 9090:9090

Opening http://localhost:9090 in the browser provided the Prometheus console.
From there, the following queries were executed to confirm metric collection:

get_info_requests_total​
process_cpu_percent​
process_rss_bytes

The results displayed multiple time series, each labelled with the corresponding
pod name and version number, confirming that metrics from both replicas were
being collected and stored by Prometheus.
This validated end-to-end observability — from application instrumentation to data
collection and visualisation.
The Kubernetes deployment was verified in full:

●​ Two pods were created and operated concurrently.
●​ The LoadBalancer distributed requests evenly between replicas.
●​ Health probes functioned as designed, ensuring resilience and automatic

recovery.
●​ Prometheus successfully scraped all defined metrics from both pods.

These results confirm that the application met every operational, configurational,
and monitoring requirement outlined in the assignment specification. The system
now functions as a fully containerised, orchestrated, and observable cloud-native
service ready for evaluation or further automation through AWS EKS.

Task 6: Configure Prometheus for Metrics
Collection
Objective
The objective of this task was to deploy Prometheus within the Kubernetes cluster
and configure it to collect runtime and application-level metrics from both replicas
of the Flask backend deployed earlier.​
The primary metrics to be collected included:

●​ Request count for the /get_info endpoint (get_info_requests_total).
●​ CPU usage (process_cpu_seconds_total or process_cpu_percent).
●​ Memory usage (process_resident_memory_bytes or process_rss_bytes).

These metrics were to be scraped automatically from both pods through
Prometheus’s service-discovery mechanism, which depends on Kubernetes pod
annotations and the /metrics endpoint exposed by the Flask application.​
The configuration involved creating a dedicated monitoring namespace, deploying
Prometheus, fixing access-control issues through RBAC, and verifying successful
metric collection using the Prometheus web dashboard.

Create the Monitoring Namespace
A dedicated namespace was created to logically isolate monitoring resources from
the main application workloads.

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl create

namespace monitoring​
namespace/monitoring created

Apply the Prometheus Configuration
Prometheus was configured using a declarative ConfigMap file defining the scrape
jobs and discovery rules.
This configuration (app-2024mt03533/prometheus/prometheus-config.yaml) used
annotation-based discovery to automatically locate pods that expose metrics.

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl apply -f

app-2024mt03533/prometheus/prometheus-config.yaml -n monitoring​
configmap/prometheus-config created

Verification of the ConfigMap confirmed successful creation:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get configmap

-n monitoring​
NAME DATA AGE​
kube-root-ca.crt 1 2m51s​
prometheus-config 1 60s

Deploy Prometheus
The Prometheus server and its associated service were deployed using the
following manifests:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl apply -f

app-2024mt03533/prometheus/prometheus-deploy.yaml -n monitoring​
Warning: resource namespaces/monitoring is missing the

kubectl.kubernetes.io/last-applied-configuration annotation ...​
namespace/monitoring configured​
deployment.apps/prometheus created​
service/prometheus created

Pod verification confirmed successful deployment:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get pods -n

monitoring​
NAME READY STATUS RESTARTS AGE​
prometheus-59575684ff-kj8qr 1/1 Running 0 9s

Expose Prometheus Service Externally
To enable external access to the Prometheus dashboard, a NodePort service was
defined and applied. The service file
app-2024mt03533/prometheus/prometheus-svc.yaml was configured as follows:

apiVersion: v1​
kind: Service​
metadata:​
 name: prometheus​
 namespace: monitoring​
spec:​

 type: NodePort​
 selector:​
 app: prometheus​
 ports:​
 - port: 9090​
 targetPort: 9090​
 nodePort: 30090

Applied using:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl apply -f

app-2024mt03533/prometheus/prometheus-svc.yaml -n monitoring​
service/prometheus configured

Verification:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get svc -n

monitoring prometheus​
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE​
prometheus NodePort 10.100.200.125 <none> 9090:30090/TCP

6m3s

The external IPs of the worker nodes were then identified:

kubectl get nodes -o wide

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get nodes -o

wide​
NAME STATUS ROLES AGE

VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE

KERNEL-VERSION CONTAINER-RUNTIME​
ip-192-168-45-54.eu-west-2.compute.internal Ready <none> 22h

v1.32.9-eks-113cf36 192.168.45.54 18.130.201.109 Amazon Linux

2023.9.20251027 6.1.156-177.286.amzn2023.x86_64

containerd://2.1.4​
ip-192-168-82-81.eu-west-2.compute.internal Ready <none> 22h

v1.32.9-eks-113cf36 192.168.82.81 35.177.152.156 Amazon Linux

2023.9.20251027 6.1.156-177.286.amzn2023.x86_64

containerd://2.1.4

Verify Prometheus in the Browser

Prometheus was accessed via:

http://18.130.201.109:30090

Challenges and Debugging

Security Group Access
Challenge: The NodePort (30090) was not accessible initially.

Fix: The AWS EC2 security group associated with the cluster nodes
(sg-0512bb98c959a2ca7) was updated to allow inbound traffic on port 30090.

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ aws ec2

authorize-security-group-ingress \​
 --group-id sg-0512bb98c959a2ca7 \​
 --protocol tcp \​
 --port 30090 \​
 --cidr 0.0.0.0/0 \​
 --region eu-west-2

"Return": true,

"IpProtocol": "tcp",

"FromPort": 30090,

"ToPort": 30090,

"CidrIpv4": "0.0.0.0/0"

This configuration ensured Prometheus could be reached externally for
verification.

Fixing Pod Discovery Failure (RBAC Permissions)
Upon checking Prometheus logs, repeated warnings indicated:
pods is forbidden: User "system:serviceaccount:monitoring:default" cannot list
resource "pods"

To fix this, an RBAC file (app-2024mt03533/prometheus/prometheus-rbac.yaml)
was created to grant Prometheus permission to list pods and services across
namespaces.

apiVersion: rbac.authorization.k8s.io/v1​
kind: ClusterRole​
metadata:​
 name: prometheus​
rules:​
 - apiGroups: [""]​
 resources:​
 - nodes​
 - nodes/proxy​
 - services​
 - endpoints​
 - pods​
 verbs: ["get", "list", "watch"]​
 - nonResourceURLs: ["/metrics"]​
 verbs: ["get"]​
​
---​
apiVersion: rbac.authorization.k8s.io/v1​
kind: ClusterRoleBinding​

metadata:​
 name: prometheus​
roleRef:​
 apiGroup: rbac.authorization.k8s.io​
 kind: ClusterRole​
 name: prometheus​
subjects:​
 - kind: ServiceAccount​
 name: default​
 namespace: monitoring

Applied with:

kubectl apply -f app-2024mt03533/prometheus/prometheus-rbac.yaml

Output:

clusterrole.rbac.authorization.k8s.io/prometheus created​
clusterrolebinding.rbac.authorization.k8s.io/prometheus created

After applying the RBAC fix, the Prometheus pod was restarted:

kubectl delete pod -n monitoring -l app=prometheus​
kubectl get pods -n monitoring -w

New pod launched successfully:

prometheus-59575684ff-pbsml 1/1 Running 0 11s

Verification of Targets
The Prometheus “Targets” page was opened via the web UI
(http://18.130.201.109:30900/targets). Two endpoints were listed under the
flask-app job, each corresponding to a different pod. Both were marked “UP,”
confirming successful metric scraping from both replicas.

Prometheus Metrics Verification
After confirming that the Flask application was correctly handling traffic and
responding through the LoadBalancer, the next stage was to verify that Prometheus
was successfully scraping and recording metrics from both replicas.
The Prometheus configuration deployed earlier through the file
prometheus/prometheus-config.yaml relied on annotation-based service
discovery, allowing it to automatically identify any pod that exposed a /metrics
endpoint with the appropriate labels.

Local Verification of Prometheus Setup
Before external exposure was configured, Prometheus functionality was verified
locally through port forwarding. The Prometheus components were deployed using
the following commands:

kubectl apply -f prometheus/prometheus-config.yaml​
kubectl apply -f prometheus/prometheus-deploy.yaml

Once the Prometheus service was active, port forwarding was enabled to access the
web interface locally:

kubectl -n monitoring port-forward svc/prometheus 9090:9090

The Prometheus console was then opened at: http://localhost:9090 in the
browser.
From the console interface, several PromQL queries were executed to confirm
successful metric collection and storage:

get_info_requests_total​

process_cpu_percent​
process_rss_bytes

The output displayed multiple time series, each labelled with the corresponding
pod name, instance IP, and version number.
This confirmed that metrics from both Flask replicas were being scraped
independently and stored within Prometheus.
The verification validated end-to-end observability — from application
instrumentation within Flask, to metric exposure via /metrics, and collection
through Prometheus’s scrape mechanism.

External Verification via NodePort Service

After verifying local functionality, Prometheus was tested through external access
via NodePort 30900.​
 Once the NodePort and AWS security group were configured correctly, the
Prometheus dashboard became accessible through the browser at:

http://18.130.201.109:30900

At this stage, the Prometheus “Targets” tab under Status → Targets displayed both
Flask pods under the job flask-app, each marked UP, confirming continuous metric
scraping from both replicas.

http://18.130.201.109:30900

PromQL Query and Metric Validation

To confirm that Prometheus was accurately collecting and differentiating data
between replicas, the PromQL query below was executed in the Table console:

To confirm that Prometheus was accurately collecting and differentiating data
between replicas, the PromQL query below was executed in the Graph console:

This query was entered in the Expression field at:
http://18.130.201.109:30900/graph
On execution, two distinct time series were returned:

instance="192.168.81.36:8000" → pod

dep-2024mt03533-54456f77bb-54shf​
instance="192.168.40.252:8000" → pod

dep-2024mt03533-54456f77bb-2xcwc

http://18.130.201.109:30900/graph

Each line corresponded to a different replica of the Flask deployment. The metric
values — 23127 and 23123 — indicated the cumulative number of requests served by
each pod, confirming that:

1.​ Prometheus was correctly scraping metrics from both /metrics endpoints.
2.​ The Kubernetes LoadBalancer was evenly distributing traffic across the two

replicas.
This result also validated that annotation-based discovery and RBAC configuration
(defined in prometheus-rbac.yaml) were functioning as expected, enabling
Prometheus to list pods and collect data cluster-wide.

CPU and Memory Metric Validation
To extend the verification to resource-level metrics, additional PromQL
expressions were executed:

process_cpu_seconds_total

This query plotted the cumulative CPU time consumed by each Flask process,
showing steadily increasing lines for both pods, which confirmed active CPU usage
tracking.

And then the query was executed:

process_resident_memory_bytes

This query reflected the memory footprint of each pod, which remained stable at
approximately 38 MB, demonstrating consistent resource usage under load.

Addition Queries

Total Requests per Second (Rate of Requests)
This query calculated how frequently the /get_info endpoint was being called,
giving an indication of live request throughput per replica:

rate(get_info_requests_total[1m])

This metric plotted the instantaneous rate of incoming requests averaged over one
minute.
It confirmed that traffic was evenly distributed by the LoadBalancer and provided a
useful performance indicator for the Flask application.

System Load and Resource Correlation

This query correlated CPU utilisation with memory usage across replicas:

process_cpu_seconds_total / process_resident_memory_bytes

	DevOps for Cloud – Assignment 1
	Vivek Bhadra
	(Roll: 2024mt03533)
	End-to-end implementation on AWS with ECR, EKS, Load Balancer, and Prometheus
	
	
	
	
	Overview
	Task 1: Create the Backend Application using Flask
	Project Structure
	Core Flask Application
	main.py

	Code Walkthrough – main.py
	Dependency Management
	Deploy your flask application locally
	Environment Setup
	Run the Application with Uvicorn
	Verify in Browser
	Observations and Verification

	Task 2: Containerisation of the Backend Application
	Objective
	Implementation
	Containerisation (Docker)
	Dockerfile Design and Explanation
	Working Directory Configuration
	Complete Dockerfile
	Build Process and Verification

	Observations and Design Considerations
	Outcome

	
	Task 3: Run the Docker Container
	Objective
	Prerequisites
	Container Run
	Verifying the Container Creation
	Verifying Local Accessibility
	Observations
	Container Shutdown and Clean-up
	Challenges and Notes
	Container Shutdown and Clean-up
	Outcome
	Kubernetes Configuration
	ConfigMap (application configuration)

	Deployment – Two Replicas with Probes and Metrics Annotations

	Task 4: Deploy the Docker Image to a Kubernetes Cluster
	Objective
	Prerequisites and Environment Setup
	Configuration via ConfigMap
	Deployment Creation
	
	Deployment Execution
	Verification and Observations
	Outcome
	Service (LoadBalancer)
	
	Prometheus Configuration (for later verification)
	
	Versioning and Tags

	Verifying the Application Works Locally
	Building the Docker Image
	Screenshot
	
	Log

	Running the Docker Image Locally
	Screenshot
	Logs

	Testing the /get_info Endpoint
	Testing the /metrics Endpoint
	Log On Client
	Screenshot

	Kubernetes Deployment and Verification of Load Balancing and Metrics Collection
	Verifying Load Balancing
	Health Probes and Pod Resilience

	Task 5: Configure Networking with a Load Balancer in the Kubernetes Cluster
	Objective
	
	Service (LoadBalancer)
	
	Kubernetes Deployment and Verification of Load Balancing and Metrics Collection
	
	Verification of Load Balancer Service
	
	Verifying Load Balancing
	Health Probes and Pod Resilience
	Outcome
	Prometheus Metrics Verification

	
	Task 6: Configure Prometheus for Metrics Collection
	Objective
	Create the Monitoring Namespace
	Apply the Prometheus Configuration
	Deploy Prometheus
	Expose Prometheus Service Externally
	Verify Prometheus in the Browser
	
	Challenges and Debugging
	Security Group Access
	Fixing Pod Discovery Failure (RBAC Permissions)

	Verification of Targets
	Prometheus Metrics Verification
	Local Verification of Prometheus Setup
	External Verification via NodePort Service
	PromQL Query and Metric Validation
	CPU and Memory Metric Validation
	Addition Queries
	Total Requests per Second (Rate of Requests)
	System Load and Resource Correlation

