DevOps for Cloud - Assignment 1
Vivek Bhadra
(Roll: 2024mt03533)

End-to-end implementation on AWS
with ECR, EKS, Load Balancer, and
Prometheus

Table of Content

Task 1: Create the Backend Application using FlaskK..........nnnncnncsnncssinnens 5
ProjECt STrUCLUTE......c.ciiiiiiiiiici e 6
Core FIask APPLICAtION.....c.cueueririririeieiirieieie ettt ettt sttt 6

100 U1 0 15) 2O 7
Code Walkthrough — Main.PY....cccoceeeeiiiiiiiieeeeeeeeeeeeeeeseee e eseeens 8
Dependency Management.........cceuieceriininiceeiereiniieeeneesieseseresessesesesesessssesesesesesssseses 11
Deploy your flask application 10Cally..........coccceeurrneeeieirniniceieiriscceeecereeeeenenes 11

ENVIFONIMENT SETUP.....oviviiiiiiiiiiiieietrieteteeteet ettt ene s 1

Run the Application With UVICOTN.......cccvruiiiininiiiniecceccee s 13

VETITY IN BIOWSET ...ttt 13

Observations and VerifiCation..........c.cevevcereirneneceieinrecceesreeeee e 14

Task 2: Containerisation of the Backend Application.............innncsinnnscnncsissnscnnnnns 15
ODJECTIVE. ...ttt bbbt bbbt aesene 15
IMPIEMENTATION. ...ttt b bbb nenes 15
Containerisation (DOCKET).........ccoeeueieiiieieeccecceceeeececeeeee e esene 15

Dockerfile Design and EXplanation...........ccceeccceninnicciennnincccieiceneneneeneenes 15
Working Directory Configuration.......c..cceerereeeceeininineceereinineneeseseenesesesesesessesesenene 16
Complete DOCKETTIE......c.ccviiiiiiiicteeee ettt saes 17

Build Process and VerifiCation..........ocococeerniecieinininiteiceseccieseseeciese s 18
Observations and Design ConSiderations..........ccveeerririneceerninieeereneneeeserensnsenes 18
OULCOIME.....ouiiiiiiiiiciiic e bbb sb e be s 19

Task 3: Run the Docker CONtAINETininiinaisissssssssssssssssssssss 20
ODJECTIVE. ..ttt be bbb bbb sesenenenerenes 20
PrerE@QUISITES.....ciiiiiiiiiicict ettt 20
CONLAINET RUINL....cciiiiiiiiiicciict ettt et b et 20
Verifying the Container Creation.........coveceuririnieereinininieereisirieeiesessiseesesesessesecsesenes 21
Verifying Local ACCESSIDILILY.....c.coviieieiririecicirrreccerreeeeseeee e 21
ODSETVALIONS. ..ottt ettt 24
Container Shutdown and Clean-—Up.........coeueeerrrnieereninineeeireeieeeseeeieesese e eveseseees 24
Challenges and NOTES.......ccccceuriiieeieiccece ettt nens 24
Container Shutdown and Clean-—Up.........coeueeerrirreereninieeeeriieeeeseeeeeeese s ereseseees 25
OULCOIMIE. ...ttt ettt ettt 25

Kubernetes CONfigUration..........ccoveueueiririnieecieiniriceeetsreeeeeietseseeecie e seeeaene 25

ConfigMap (application CONfiguration)..........cccoeeeueuerererererereiereererereeererererererenenenes 25

Deployment - Two Replicas with Probes and Metrics Annotations...........cc.eeuc.... 26
Task 4: Deploy the Docker Image to a Kubernetes Cluster.............ucninsnscrncnnn. 30
ODJECTIVE. ...ttt bbb senes 30
Prerequisites and ENvVironment SELUP........cccoeeeeeeeeeeeeeeeeeeeeeeeneeseseseesenenene 30
Configuration via CONfIGMAD......cccceurrririeieiririiecreirreeeice ettt seseesesesees 32
DePlOYMENT CrEAtION....c.cveviveieieieieieieieieieieiereieieieieieiererereser e seaens 33
Deployment EXECULION.occccueveiiieicieiririccietetrcicietetseeeiese et eesesesens 35
Verification and ODSEIVAtiONS.........ccceviieiiiiiiieeitceeeeeee e 35
OULCOIME.......eiiiiiiiiic ettt st bbbt b bt sa b 36
Service (LOAdBalanCer).......covvuveviriririririeinrieirisrtsete ettt sene 36
Prometheus Configuration (for later verification)...........coceeeeceuerrncccreinnencccreinenenes 37
Versioning and Ta@S.......ccvvreverereririreririnerinisisisesisesesesesestsesasesassstssstsssssaesssesssssesesesesesesesenes 39
Verifying the Application WOrks Locally...........nninininsisinsisnssississsssssssssssssees 40
Building the DOCKET IMAGE........cccevvveerireieiieieieetreeenesesesesesesesesesesesesesesesesesesesssesenes 40
SCIEENSNOT. ... bbb 40
LLOG . ettt 41
Running the Docker Image LOCally........cocccernneciennicccirrccesreeeeieeeseeesenene 43
SCTEENSNOL. ...ttt 43
LOZS ittt b b s 43
Testing the /get_info ENAPOINt......ccoeeeeiiiiiiciceceecceceeeeeeieeeseeeneenenes 44
Testing the /metrics ENAPOINT........oovvrrrnirrrrrrrrrrrsrs s 45
LOZ ON CHENL.....vieieieiriecieieisiceie sttt ettt 45
SCIEENSNOT. ... e 47
Kubernetes Deployment and Verification of Load Balancing and Metrics
L0 | T2 T T 47
Verifying Load BalanCing.........cccceveveeeinininicereiniieiciesseeeiere e sseseeseseneens 48
Health Probes and Pod ReSIlIENCE..........cccovviiciiiviniiiciciririccccceseaes 49
Task 5: Configure Networking with a Load Balancer in the Kubernetes Cluster...49
ODJECTIVE. ..ttt bbb eb bbb bbb bbb bbb ebebesebesenenenes 49
Service (LOAdBalanCer).......ccccvrecereininiecieiririnecicieiesieciese sttt 49
Kubernetes Deployment and Verification of Load Balancing and Metrics
COLECTION. ...ttt bbb sene 51
Verification of Load BalanCer SEIrVICE.........coovierrrnirieeereininiecieiesieeieieseeseeaesesenene 52

Verifying Load BalanCing...........ccoveeieinniniieieininiceeieisisecieeisseseeieiesssseeesesessssesesenens 53

Health Probes and POd RESIHENCE.uooeeeeeeeeeeeeeeeeeeee ettt e eeeeeeveeseessaesenne 54

OULCOTNIE. ...ttt ettt 54
Prometheus Metrics VerifiCation.........ccccevniicciinininicceicceeccenennes 54
Task 6: Configure Prometheus for Metrics Collection............rnnincncnncnscnncnncns 56
ODJECTIVE. ...ttt ettt bbbttt sttt bbbttt s et aenes 56
Create the Monitoring NamMESPACE.......c.ccvveueueveuririrecrereinireeieieteeseesesesesseseeesesessesesesens 56
Apply the Prometheus Configuration..........c.cococeeeeeeieeeeeeeeeeceeeeeeeeeeseaes 56
DePlOy PrOMETNEUS.....c.cucveveiiicicicieiccieecicte ettt 57
Expose Prometheus Service EXternally........ccceeriereeenenenineeeceeeeeeeeseeenene 57
Verify Prometheus in the BrOWSET ... 59
Challenges and DEDUZGZING.........ccccuueuriririiieieiririiteeieieeieeeseseee ettt 59
SECUTILY GTOUD ACCESS.....viuiuiveriiireicieteisesteseseteeseesesese s eseesese st asesesesesesssesesesesessas 59
Fixing Pod Discovery Failure (RBAC PermiSsions)..........cceveeceevvnnecercinininccnenens 60
VeTification Of TArGELS......ccovviereieiririccieierecceteeiete et 61
Prometheus Metrics VerifiCation........coceeiccieinininiccencceesceeescesennes 62
Local Verification of Prometheus Setup..........cccoeeeveeeiieinerenineneeeeeeeeeseenene 62
External Verification via NOdePOIt SErviCe.........coovvceuevvnnicecrerninniccrcirniccenens 63
PromQL Query and Metric Validation..........ccocoecceereninieeieinnencccreesccereseenenes 64
CPU and Memory Metric Validation........cccovvrrrenirirenininininssesssiseseeeeeeieeeees 65
Addition QUETIES......c.cuiiieveiereeiteeteeteteeete ettt et s e ss e s b s b se s sene 66
Total Requests per Second (Rate of REQUESES)......ccceveuereveverererererererereeereennes 66

System Load and Resource COrrelation..........coocceenneneceeninenecceenneneneenes 67

Overview

This submission presents, in a single coherent narrative, the process through which
a minimal Flask web service was designed, built, containerised, and deployed to a
managed Kubernetes cluster on AWS. Subsequently, the service was instrumented
for metrics collection and verification using Prometheus. The assignment
submission write-up is structured in accordance with the assignment’s six defined
tasks, demonstrating how each requirement was implemented and validated within
the deployment environment.
e AWS Account ID: 402691950139
e Region: eu-west-2 (London)
e ECRrepository:
402691950139.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533
e Kubernetes cluster: dep-2024mt03533 (EKS)
e Node public IPs: 18.130.201.109, 35.177.152.156
e Service (ELB) DNS:
abde9643d75b24f39a5fb585d5e078aa-375594286.eu-west-2.elb.amazonaws.c
om
e Service ports: HTTP 8000 (app), NodePort 30900 (Prometheus)
Screenshots and trimmed logs are referenced as figures; they were captured during
execution and will be embedded in the final PDF at the indicated placeholders.

Task 1: Create the Backend Application using
Flask

Requirement:

Implement a Flask application exposing /get_info that returns a JSON object with
APP_VERSION (initially “1.0”) and APP_TITLE (“Devops for Cloud Assignment”),
injected dynamically by environment variables. Run locally with Uvicorn and
provide evidence in a browser. Project directory must be app-<roll_number> and
Python file named main.py.

This section documents the complete development of the assignment application
from a blank folder to a containerised, Kubernetes-ready service with Prometheus
metrics. The objective was to meet the brief exactly: implement a Flask app

http://main.py

exposing two endpoints— /get_info and /metrics—and instrument it with three
required Prometheus metrics, then package it for Docker and Kubernetes.

Project Structure

A dedicated submission folder named with the roll number was created:

app-2024mte3533/

— main.py

— requirements.txt

— Dockerfile

— k8s/

| |— config-2024mt@3533.yaml
| |— dep-2024mte3533.yaml

| L — svc-2024mte3533.yaml
L— prometheus/

F—— prometheus-config.yaml
L— prometheus-deploy.yaml

Dockerfile

dep-2024mt@3533.yaml
svc-2024mt03533.yaml
main.py

E config-2024mte3533.yaml

prometheus-config.yaml
prometheus-deploy.yaml
requirements.txt

Core Flask Application

We implemented a minimal Flask application that:
e Reads APP_VERSION and APP_TITLE from environment variables (populated
via ConfigMap in Kubernetes).
e Serves /get_info to return a small JSON payload needed for verification.
e Serves /metrics for Prometheus scraping (exposed via WSGI middleware).

e Uses Uvicorn to run as an ASGI server for reliable container operation.

main.py

#!/usr/bin/env python3

main.py

import os

from flask import Flask, jsonify

from asgiref.wsgi import WsgiToAsgi

from werkzeug.middleware.dispatcher import DispatcherMiddleware
from prometheus_client import Counter, Gauge, generate_latest,
CONTENT_TYPE_LATEST

import psutil

APP_VERSION
APP_TITLE
POD_NAME

os.getenv("APP_VERSION", "1.0")
os.getenv("APP_TITLE", "Devops for Cloud Assignment")
os.getenv("HOSTNAME") or os.uname().nodename

REQUEST_COUNT = Counter("get_info_requests_total", "Total /get info
requests”, ["pod", "version"])

CPU_PERCENT Gauge("process_cpu_percent", "Process CPU percent
(per replica)", ["pod", "version"])

RSS_BYTES = Gauge("process_rss bytes", "Resident set size in
bytes (per replica)", ["pod", "version"])

app = Flask(__name_)

@app.route("/get_info", methods=["GET"])
def get_info():
REQUEST_COUNT. labels(pod=POD_NAME, version=APP_VERSION).inc()
p = psutil.Process(os.getpid())
RSS_BYTES. labels(pod=POD_NAME,
version=APP_VERSION).set(p.memory_info().rss)
CPU_PERCENT.labels(pod=POD_NAME,
version=APP_VERSION).set(p.cpu_percent(interval=0.0))
return jsonify({"APP_VERSION": APP_VERSION, "APP_TITLE":
APP_TITLE, "pod": POD_NAME}), 200

def metrics_app(environ, start response):

data = generate_latest()
start_response("200 OK", [("Content-Type", CONTENT_TYPE_LATEST)])
return [data]

application = DispatcherMiddleware(app, {"/metrics": metrics_app})
asgi_app = WsgiToAsgi(application)

if _name__ == "_main__ ":
import uvicorn
uvicorn.run("main:asgi_app", host="0.0.0.0", port=8000,
reload=False)

Code Walkthrough - main.py

The core of this assignment is the Python script main.py, which implements the
web application and integrates Prometheus-based monitoring. This single file
brings together the logic for responding to client requests, collecting system-level
statistics, and exposing performance metrics to monitoring systems. The
development approach was deliberately minimalistic yet structured to ensure
readability, reliability, and alignment with the assignment requirements.

The application begins with a few essential imports. The Flask framework provides
the web server foundation and is responsible for handling HTTP routes such as
/get_info. The Prometheus client library is imported to define and expose
performance metrics that can later be scraped by Prometheus. Additionally, the
psutil module is used to capture real-time CPU and memory usage of the running
process. Together, these form the building blocks of a small but complete web
service.

import os

from flask import Flask, jsonify

from asgiref.wsgi import WsgiToAsgi

from werkzeug.middleware.dispatcher import DispatcherMiddleware
from prometheus_client import Counter, Gauge, generate_latest,
CONTENT_TYPE_LATEST

import psutil

Once the required libraries are available, the program reads the environment
variables that will hold deployment-specific values. In this project, the version
number and title of the application are stored in variables APP_VERSION and

APP_TITLE. These values are injected by Kubernetes at runtime through a
ConfigMap, allowing the same container image to behave differently across
environments without requiring rebuilds. The HOSTNAME environment variable,
automatically provided inside a container, is used to identify the running pod. This
makes it possible to trace which replica of the application handled a given request
when it is deployed with multiple pods.

APP_VERSION = os.getenv("APP_VERSION", "1.0")

APP_TITLE os.getenv("APP_TITLE", "Devops for Cloud Assignment")
POD_NAME = os.getenv("HOSTNAME") or os.uname().nodename

The next segment of the code defines three Prometheus metrics that the
assignment explicitly requires. The first metric, get_info_requests_total, is a
counter that increments each time the /get_info endpoint is accessed. The other
two are gauges, representing instantaneous measurements of CPU usage and
memory consumption (resident set size). Each metric is labelled with the pod and
version values, ensuring that Prometheus can distinguish data coming from
different replicas or application versions once deployed to Kubernetes.

REQUEST _COUNT = Counter("get_info requests_total"”, "Total /get_ info
requests"”, ["pod", "version"])

CPU_PERCENT = Gauge("process_cpu_percent", "Process CPU percent
(per replica)", ["pod", "version"])
RSS _BYTES = Gauge("process_rss_bytes", "Resident set size in

bytes (per replica)", ["pod", "version"])

After initialising the metrics, a Flask application instance is created. The design
philosophy here is to keep the routing layer extremely lean—only two endpoints are
provided, /get_info for functionality testing and /metrics for monitoring. The
/get_info route is implemented using Flask’s standard route decorator. Each time it
is invoked, the counter metric is incremented, and the psutil library is used to
measure the process’s current CPU utilisation and memory footprint. These
readings are updated in the Prometheus gauges before the function returns a JSON
response containing the application’s version, title, and pod name. This JSON
output confirms that the application is alive and that environment variables are
being correctly read.

@app.route("/get_info", methods=["GET"])

def get_info():
REQUEST _COUNT.labels(pod=POD_NAME, version=APP_VERSION).inc()
p = psutil.Process(os.getpid())

RSS_BYTES. labels(pod=POD_NAME,
version=APP_VERSION).set(p.memory_info().rss)
CPU_PERCENT.labels(pod=POD_NAME,
version=APP_VERSION).set(p.cpu_percent(interval=0.0))
return jsonify({
"APP_VERSION": APP_VERSION,
"APP_TITLE": APP_TITLE,
"pod": POD_NAME
}), 200

The second endpoint, /metrics, is created not through Flask directly but as a small
WSGI application that generates the latest set of metrics in Prometheus’s expected
text format. This approach ensures a clean separation between business logic and
monitoring data. The metrics app simply produces a plaintext response with the
correct Content-Type header so that Prometheus can scrape it automatically.

def metrics_app(environ, start _response):
data = generate_latest()
start_response("200 OK", [("Content-Type", CONTENT_TYPE_ LATEST)])
return [data]

Both the Flask application and the metrics endpoint are then combined into a single
WSGI composite application using Werkzeug'’s DispatcherMiddleware. This
middleware mounts the metrics app under the /metrics path while keeping all
other routes directed to the main Flask app. The combined WSGI application is
subsequently wrapped by WsgiToAsgi, an adapter that converts it to an
ASGI-compatible interface. This conversion allows Uvicorn, an ASGI web server, to
host the application efficiently in modern containerised environments.

application = DispatcherMiddleware(app, {"/metrics": metrics_app})

asgi_app = WsgiToAsgi(application)
Finally, the script includes a main entry point to launch the server. When executed,
it starts Uvicorn and binds it to host 0.0.0.0 on port 8000, which is the same port
exposed in the Dockerfile and Kubernetes Service definition. The application runs
in a single process, which is sufficient for demonstration and testing purposes.
Once running, it is capable of serving both /get_info and /metrics requests
simultaneously.

if _name__ == "__main__ ":
import uvicorn

uvicorn.run("main:asgi_app", host="0.0.0.0", port=8000,
reload=False)

In summary, main.py encapsulates a complete, self-contained web service that
meets every functional requirement of the assignment. The Flask route /get_info
verifies that the application logic and environment configuration are operational,
while the /metrics endpoint provides continuous observability through
Prometheus. The use of Uvicorn and ASGI ensures the app is production-ready and
fully compatible with container orchestration environments such as Kubernetes.
When run inside Docker or deployed to EKS, this same script behaves consistently
across replicas, making it a reliable foundation for the later stages of the
assignment.

Dependency Management

All dependencies required by the application are explicitly listed and
version-pinned in the requirements.txt file. Pinning ensures that each build of the
image installs the same package versions, avoiding compatibility issues or
unexpected behaviour due to upstream updates. The application relies on Flask
(3.0.3) as the web framework, Uvicorn (0.30.6) for serving the ASGI interface,
Prometheus-client (0.20.0) for metric collection, and psutil (5.9.8) to monitor CPU
and memory usage. Supporting libraries such as Werkzeug and asgiref provide the
middleware and interface adaptation required for a clean ASGI deployment.
Together, these dependencies form a minimal yet complete environment for
building and monitoring the Flask-based application.

flask==3.0.3
uvicorn==0.30.6
asgiref==3.8.1
Werkzeug==3.0.3
prometheus-client==0.20.0
psutil==5.9.8

Deploy your flask application locally

Environment Setup

To ensure a clean and reproducible local setup, a dedicated Python virtual
environment was created within the project directory. This isolates all

dependencies required by the Flask application from the system-wide Python
installation. The following steps were performed from the terminal:

cd ~/devOps-assignment-1/app-2024mt03533
python3 -m venv venv
source venv/bin/activate

The venv module installed using:

sudo apt install python3-venv

$ sudo apt install python3.1e-venv
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages were automatically installed and are no longer require
app-install-data-partner bsdmainutils crda g++-9 girl.2-clutter-1.6 girl.2-clutter-gst-3.0 girl.2-cogl-1.0 girl.2-coglpango-1.0 girl.2-gnomebluetooth-1.0 girl.2-gtkclutter-1.6
gnome-getting-started-docs gnome-screenshot ippusbxd libamtk-5-8 libamtk-5-common libasni-8-heimdal libboost-date-time1.71.6 libboost-filesysteml.71.0 Llibboost-iostreams1.71.0 libboost-localel.71.0
libboost-thread1.71.0 1'1bbrlapi() 7 libcamel-1.2-62 libcbor6.6 libcdio18 libcmis-0.5-5v5 libdns-export11609 libedataserver-1.2-24 libedataserverui-1.2-2 libextutils-pkgconfig-perl libfuse2
1ibgdk-pixbuf-x1ib-2.6-0 libgd buf2.0-6 libgssapi3-heindal libgupnp-1.2-6 libhandy-8.6-0 libhcryptod-heimdal libheimbasei-heimdal libheimntlno-heindal libhogweeds 1ibhx509-5-heimdal libicu66
libidn11 libis122 libjson-c4 hl)]uh java libjurt-java libkrb5-26-heimdal libldap-2.4-2 liblibreoffice-java libllvm12 libmozjs-68-0 libmpdecz libmysqlclient21 libneon27-gnutls libnettle7 libntfs-3g883
liborcus-0.15-6 libphonenumber7 libpoppler97 libprotobuf17 libpython3.8 libpython3.8-minimal libpython3.8-stdlib libqpdf26 libraw19 libreoffice-style-tango libridl-java libroken18-heimdal libsane
libstdc++-9-dev libtepl-4-6 libtracker-control-2.6-0 libtracker-niner-2.0-6 libtracker-sparql-2.0-8 libunoloader-java libvpx6 libwebps libwinde-heimdal 1ibwmfo.2-7 linux-headers-generic-hwe-20.04
linux-image-generic-hwe-20.04 ltrace 1z4 mysql-common ncal pkg-config popularity-contest python3-entrypoints python3-requests-unixsocket python3-simplejson python3.s python3.s-minimal syslinux
syslinux-common syslinux-legacy ure-java vino xul-ext-ubufox
Use 'sudo apt autoremove' to remove them.
The following additional packages will be installed:
python3-pip-whl python3-setuptools-whl
The following NEW packages will be installed
python3-pip-whl python3-setuptools-whl python3.16-venv
0 to upgrade, 3 to newly install, © to remove and 41 not to upgrade.
Need to get 2,478 kB of archives.
after this operation, 2,891 kB of additional disk space will be used.
bo you want to continue? [Y/n] Y
1 http://gb.archive.ubuntu.com/ubuntu jammy-updates/universe amnd64 python3-pip-whl all 22.6.2+dfsg-1ubuntue.7 [1,683 kB]
Get:2 http://gb.archive.ubuntu.com/ubuntu jammy-updates/universe and64 python3-setuptools-whl all 59.6.0-1.2ubuntu6.22.04.3 [789 kB]
Get:3 http://gb.archive.ubuntu.com/ubuntu jammy-updates/universe and64 python3.10-venv amdé4 3.16.12-1~22.04.11 [5,726 B]
Fetched 2,478 kB in 0s (7,542 kB/s)
Selecting previously unselected package python3-pip-whl.
(Read\ng database 300380 files and directories currently installed.)
to unpack .../python3-pip-whl_22.0.2+dfsg-1ubuntu®.7_all.deb ..
python3-pip-whl (22.6.2+dfsg-1ubuntue.7) .
previously unselected package python3-setuptools-whl.
to unpack .../python3-setuptools-whl_59.6.0-1.2ubuntu6.22.04.3_all.deb ...
python3-setuptools-whl (59.6.0-1.2ubuntu0.22.04.3) .
previously unselected package python3.10-venv.
to unpack .../python3.10-venv_3.10.12-1~22.04.11_and64.deb ...
python3.10-venv (3.10.12-1~22.64.11) .
tting up python3-setuptools-whl (59.6.0-1.2ubuUntue.22.04.3) .
etting up python3-pip-whl (22.0.2+dfsg-1ubuntue.7) ...
tting up python3.10-venv (3.10.12-1-22.04.11) .

After activating the virtual environment, the application dependencies were
installed using the requirements.txt file included in the project directory:

pip install -r requirements.txt

S pip install -r requirements.txt

Downloading Flask-3.0.3- py3-none-any.whl (101 kB)
eta
collecting uvicorn=-6.30.6
Downloading uvicorn-6.30.6-py3-none-any.whl (62 kB)

Collecting asgiref==3.8.1

Downloading asg\ref 3 a 1-py3-none-any .hl (23 kB)
Collecting Werkzeu

Downloading werk: :ug 3 o 3-py3-none-any.whl (227 kB)

collecting prometheus-client==6.26.
Downloading prometheus_client-0.20.0-py3-none-any.whl (54 kB)
eta
Collecting psutil==5.9.8
Downloading psutil-5.9.8-cp36-abi3-manylinu _x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (288 kB)
eta
collecting clic
Downloading click-8.3.0-py3-none-any.whl (167 kB)

Collecting Jinjaz>=3.1.2
Downloading jinja2-3.1.6-py3-none-any.whl (134 kB)

collecting itsdangerous>=2.1.2

Downloading itsdangerous-2.2.0-py3-none-any.whl (16 kB)
Collecting blinker: 2

Downloading blinker-1.9.0-py3-none-any.whl (8.5 kB)
collecting typins

Downloading typing_extensions-4.15.6-py3-none-any.whl (44 kB)

collecting h11>=0.8
0

Downloading markupsafe- She cp310-cp316-manylinux2014_x86_64.manylinux_2_17_ 4.manylinux_2_28_x86_64.whl (20 kB)
Installing collected packages: typing-extensions, psutil, prometheus-client, Markupsafe, itsdangerous, hii, click, blinker, Werkzeug, uvicorn, Jinjaz, asgiref, flask
Successfully installed Jinjaz-3.1.6 MarkupSafe-3.0.3 Werkzeug-3.0.3 asgiref-3.8.1 blinker-1.9.0 click-8.3.0 flask-3.6.3 h11-0.16.0 itsdangerous-2.2.6 prometheus-client-0.20.0 psutil-5.9.8 typing-extension
s-4.15.0 uvicorn-e.30.6

The dependency list includes:
Flask 3.0.3 - the primary web framework
Uvicorn 0.30.6 — ASGI server used to host the application
asgiref 3.8.1 - WSGI to ASGI adapter
Werkzeug 3.0.3 - Flask’s underlying WSGI library
prometheus-client 0.20.0 - for exposing application metrics
e psutil 5.9.8 - for CPU and memory monitoring
Once installed, these packages formed a fully functional runtime environment for
the backend service.

Run the Application with Uvicorn

From the project directory the following command was run:

uvicorn main:asgi_app --host 0.0.0.0 --port 8000

$ uvicorn main:asgi_app --host 0.0.0.0 --port 8000

(venv)

Started server process [1

Waiting for application startup.

ASGI 'lifespan' protocol appears unsupported.
Application startup complete.

Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
127.0.0.1:48958 - "GET fget_info HTTP/1.1"

127.0.0.1:48958 - "GET ffavicon.ico HTTP/1.1"

As can be seen from the screenshot, uvicorn reported successful startup on port
8000.

Verify in Browser
The endpoint was opened in a browser:

http://localhost:8000/get_info

localhost:8000/get_info x <+

C @ localhost:8000/get_info

3 Imported Fro... [Alcatel-lucent [Importe

Pretty print

{
"APP_TITLE": "Devops for Cloud Assignment™,
"APP_VERSION™: "1.@",

"pod": "vbhadra-DQ77TMK"

I

Observed JSON response:

{"APP_TITLE" :"Devops for Cloud
Assignment","APP_VERSION":"1.0","pod":"vbhadra-DQ77MK" }

Observations and Verification

Successful execution verified that:

e The environment variables were being read correctly.

e The API returned the correct JSON payload.

e The Prometheus /metrics endpoint was operational.

e Uvicorn correctly hosted the ASGI-wrapped Flask application on port 8000.
The log output confirmed that the application started without errors, and
subsequent requests were handled smoothly.

Task 2: Containerisation of the Backend
Application

Objective

This task required the previously implemented Python Flask backend to be
containerised using Docker. Containerisation was expected to ensure identical
behaviour across environments by packaging the entire runtime which is the
Python interpreter, dependencies, and application code to be packaged into a
single image that could later be deployed seamlessly to Kubernetes or any cloud
platform. The Docker image was required to be minimal, deterministic, and
production-ready.

Implementation

After successful local testing of the Flask application, containerisation was
performed through the creation of a Dockerfile placed within the project directory
app-2024mt03533/.

The Dockerfile defined all build steps necessary to produce a clean, self-contained
runtime image.

Containerisation (Docker)

After completing and testing the Python application locally, the next step was to
package it into a Docker container to ensure consistent behaviour across different
machines and deployment environments.

Containerisation allows the entire runtime—including the Python interpreter,
dependencies, and application code—to be bundled together in a self-contained
image that can be deployed seamlessly to Kubernetes or any cloud platform.

Dockerfile Design and Explanation
The container build is defined through the following Dockerfile:
FROM python:3.11-slim

The base image python:3.11-slim was chosen deliberately because it offers a
minimal, up-to-date environment with only the essentials required to run Python

applications. Using the slim variant helps reduce the image size, improving build
times and network efficiency when pulling images to remote clusters.

Working Directory Configuration

The next instruction sets up a clean working directory inside the container where
the application will reside:

WORKDIR /app

This creates a directory named /app and sets it as the current working directory
for all subsequent instructions. It ensures a predictable and isolated file structure
inside the container.

The dependencies are then copied and installed:

COPY requirements.txt ./
RUN pip install --no-cache-dir -r requirements.txt

By copying the requirements.txt file first, Docker can take advantage of layer
caching—meaning dependencies are only reinstalled if this file changes. The
--no-cache-dir flag prevents pip from storing package archives, keeping the image
compact. This step guarantees that all the libraries used by the application—Flask,
Uvicorn, psutil, and the Prometheus client—are installed with their exact pinned
versions.

After installing the dependencies, the main application file is added:
COPY main.py ./

This copies the main.py script into the container’s /app directory. At this point, the
image contains both the runtime environment and the application code, making it
self-contained and ready to execute anywhere.

To make the container more flexible in Kubernetes, two environment variables are
defined with default values:

ENV APP_VERSION="1.0" APP_TITLE="Devops for Cloud Assignment"

These variables can later be overridden dynamically using a Kubernetes ConfigMap,
allowing the same image to be reused for different environments or versions
without modification.

Next, the container explicitly exposes port 8000 to the host environment:

EXPOSE 8000

This tells Docker and orchestration systems that the application inside the
container listens for HTTP requests on port 8000.

Finally, the CMD instruction specifies how the container should start when
launched:
CMD ["uvicorn", "main:asgi_app", "--host", "0.0.0.0", "--port",
"8000"]
When the container starts, this command invokes Uvicorn, which serves the Flask
application (wrapped as an ASGI app) on all network interfaces. The address 0.0.0.0

ensures the app is reachable both locally and inside Kubernetes pods, while port
8000 matches the configuration exposed earlier.

In summary, this Dockerfile constructs a lightweight, production-ready image that
isolates the entire application stack. By combining Python 3.11, pinned
dependencies, and a deterministic startup command, it guarantees the same
behaviour whether executed on a developer’s workstation, in a CI /CD pipeline, or
inside a Kubernetes cluster.

Complete Dockerfile

FROM python:3.11-slim

WORKDIR /app
COPY requirements.txt ./
RUN pip install --no-cache-dir -r requirements.txt

COPY main.py ./

Defaults are overridden by env in Kubernetes (ConfigMap)
ENV APP_VERSION="1.0" APP_TITLE="Devops for Cloud Assignment"

EXPOSE 8000

CMD ["uvicorn", "main:asgi app", "--host", "0.0.0.0", "--port",
"89@9"]

Notes:

e python:3.11-slim keeps the image lean.
e No dev tools are left in the final image; only runtime dependencies.
e The application starts via Uvicorn with the ASGI-wrapped Flask app.

Build Process and Verification

After the Dockerfile was completed, the image was built using the command:

docker build -t img-2024mt03533:v1.0 app-2024mt03533/

$ docker build -t img-2024nt03533:v1.0 app-2024mt03533/

[+] Building 19.85 (16/16) FINISHED

The build logs confirmed that each layer executed successfully and the final image
was produced with a size of approximately 144 MB.

Verification was performed using:

docker images | grep img-2024mt03533
402691950139.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533 v1.0

f0e721261009 3 days ago 144MB
img-2024mt03533 v1.0
f0e721261009 3 days ago 144MB

S docker images | grep img-2024mt@3533

v1.0 fd10eBedbs845 43 seconds ago 144MB

Observations and Design Considerations

e The image was based on a slim Python distribution to minimise size and
security surface.

e Build-time and runtime concerns were separated for determinism.

e requirements.txt was layered before application code to leverage Docker
caching.

e Environment variables were declared to enable future Kubernetes ConfigMap
injection.

e Port 8000 was standardised for consistency between local and cloud
deployments.

e Uvicorn was used as an ASGI server to ensure high-performance
concurrency.

Outcome

A lightweight and production-ready Docker image for the Flask application was
successfully built and verified locally.

The image contained all runtime dependencies and application code and was
tagged as img-2024mt03533:v1.0.

The containerisation process met all assignment requirements and served as the
foundation for subsequent deployment to AWS ECR and EKS.

Task 3: Run the Docker Container

Objective

The objective of this task was to execute the image built in Task 2 as a local Docker
container, name it following the assignment convention (cnr-2024mt03533), verify
the container’s creation with appropriate Docker commands, and confirm that the
application was accessible at http: //localhost:8000. The process was documented
step by step with evidence placeholders for screenshots and logs.

Prerequisites
The image created in Task 2 was available locally under the required tag:

docker images | grep img-2024mt03533
Expected: img-2024mt03533 vl.0 <IMAGE_ID> <AGE> 144MB

$ docker images | grep img-2024mt@3533

v1.0 fdloe0e0ob845 About a minute ago 144MB

Container Run

The container was started in the foreground to capture start-up logs clearly,
mapping host port 8000 to the container’s port 8000:

docker run --rm --name cnr-2024mt03533 -p 8000:8000
img-2024mt03533:v1.0

e --rm ensured the container was removed automatically after it stopped.
e --name cnr-2024mt03533 followed the assignment naming convention.
e -p 8000:8000 mapped the service to the host for local browser access.

On start, Uvicorn logs indicated that the ASGI application was initialised and
listening:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ sudo docker run --rm
--name cnr-2024mt03533 -p 8000:8000 img-2024mt03533:v1.0

INFO: Started server process [1]

INFO: Waiting for application startup.

INFO: ASGI 'lifespan' protocol appears unsupported.
INFO: Application startup complete.

INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to

$ sudo docker run --rm --name cnr-2023mt@3013 -p 8000:8000 img-2023mte3613:vi.0

Started server process [1]
Waiting for application startup.
ASGI 'lifespan' protocol appears unsupported.

Application startup complete.

Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

Verifying the Container Creation
In a separate terminal, the running container was verified using standard Docker

commands:

vbhadra@vbhadra-DQ77MK:~$ sudo docker ps
[sudo] password for vbhadra:

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

24908ce318c8 img-2024mt03533:v1.0 "uvicorn main:asgi_a..." 2
minutes ago Up 2 minutes 0.0.0.0:8000->8000/tcp,
[::]:8000->8000/tcp cnr-2024mt03533

:-5 sudo docker ps
[sudo] password for vbhadra:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
24908ce318c8 img-2023mt03013:v1.0 "uvicorn main:asgi_a.." 2 minutes ago Up 2 minutes 0.0.0.0:8000->8000/tcp, [::]:8000->8000/tcp cnr-2023mte3013

Inspect the details:

vbhadra@vbhadra-DQ77MK:~$ sudo docker inspect cnr-2024mt03533
--format '{{.Name}} {{.State.Status}} {{.Config.Image}}'
/cnr-2024mt03533 running img-2024mt03533:v1.0

;5% sudo docker inspect cnr-2023mt®3013 --format '{{.Name}} {{.State.Status}} {{.Config.Image}}'

fenr-2023mt03013 running img-2023mt03013:v1.0

Verifying Local Accessibility

The application was accessed via a web browser at:

localhost:8000/get_info = +

C @ localhost:8000/get_info

3 Imported Fro... [Alcatel-lucent [Imported Fro...

Pretty print

{
"APP_TITLE": "Devops for Cloud Assignment”,
"APP_VERSION": "1.@",

"pod": "24908Bce31BcB"

b

The JSON response included the configured app_title, app_version,and a
host/pod identifier:

{
"APP_TITLE": "Devops for Cloud Assignment",

"APP_VERSION": "1.0",
"pod": "24908ce318c8"

}

Command-line verification was also performed:

vbhadra@vbhadra-DQ77MK:~$ curl -s http://localhost:8000/get_info | jq

"APP_TITLE": "Devops for Cloud Assignment”,
"APP_VERSION": "1.0",
"pod": "24908ce318c8"

}

:-S curl -s http://localhost:8000/get info | jg .

The Prometheus metrics endpoint was confirmed to be available and emitting
text-format metrics:

vbhadra@vbhadra-DQ77MK:~$ curl -s http://localhost:8000/metrics |
head -n 20

HELP python_gc_objects_collected_total Objects collected during gc
TYPE python_gc_objects_collected_total counter

python_gc objects collected_total{generation="0"} 268.0
python_gc_objects_collected_total{generation="1"} 395.0
python_gc_objects_collected_total{generation="2"} 0.0

HELP python_gc _objects_uncollectable total Uncollectable objects
found during GC

TYPE python_gc_objects_uncollectable_total counter

python_gc objects _uncollectable_total{generation="0"} 0.0
python_gc_objects_uncollectable_total{generation="1"} 0.0
python_gc_objects_uncollectable_total{generation="2"} 0.0

HELP python_gc _collections_total Number of times this generation
was collected

TYPE python_gc_collections_total counter

python_gc _collections_total{generation="0"} 92.0

python _gc collections_total{generation="1"} 8.0
python_gc_collections_total{generation="2"} 0.0

HELP python_info Python platform information

TYPE python_info gauge
python_info{implementation="CPython",major="3",minor="11",patchlevel=
"14" ,version="3.11.14"} 1.0

HELP process_virtual memory bytes Virtual memory size in bytes.
TYPE process_virtual_memory_bytes gauge

:-$ curl -s http://localhost:8000/metrics | head -n 20
HELP python_gc objects collected total Objects collected during gc
TYPE python_gc objects collected total counter
python_gc objects collected total{generation="8"} 268.0
python_gc_objects_collected_total{generation="1"} 395.8
python_gc_objects_collected_total{generation="2"} 8.8
HELP python_gc_objects uncollectable total Uncollectable objects found during GC
TYPE python_gc objects uncollectable_ total counter
python_gc_objects_uncollectable_total{generation="8"} 8.8
python_gc_objects_uncollectable_total{generation="1"} 8.8
python_gc _objects uncollectable total{generation="2"} 0.0
HELP python_gc collections_total Number of times this generation was collected
TYPE python_gc _collections_total counter
python_gc_collections_total{generation="80"} 92.8
python_gc_collections_total{generation="1"} 8.0
python_gc_collections_total{generation="2"} 0.0
HELP python_info Python platform information
TYPE python_info gauge
python_info{implementation="CPython",major="3",minor="11",patchlevel="14" ,version="3.11.14"} 1.0
HELP process_virtual _memory_ bytes Virtual memory size in bytes.
TYPE process virtual memory bytes gauge

Observations

e The container started cleanly with Uvicorn, binding on 0.0.0.0:8000.

e /get_info returned the expected keys (app_title, app_version, pod,
time_utc).

e /metrics exposed Prometheus-compatible metrics, enabling later scraping in
Kubernetes.

Container Shutdown and Clean-up

After verification, the running container was stopped from the foreground with
Ctrl+C (since --rm was used, it was removed automatically). For background runs,
the following could be used:

Challenges and Notes

No runtime issues were observed during the clean run.

If Docker daemon permissions are encountered on some systems (e.g. “permission
denied while trying to connect to the Docker daemon socket”), this is typically
resolved by ensuring the user is in the docker group and reloading group
membership:

vbhadra@vbhadra-DQ77MK:~$ sudo usermod -aG docker "$USER"
vbhadra@vbhadra-DQ77MK:~$ newgrp docker
vbhadra@vbhadra-DQ77MK:~$ docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES

24908ce318c8 img-2024mt03533:v1.0 "uvicorn main:asgi_a..." 11

minutes ago Up 11 minutes ©.0.0.0:8000->8000/tcp,
[::]:8000->8000/tcp cnr-2024mt03533

:-$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

24908ce318c8 img-2023mt03013:v1.0 "uvicorn main:asgi_a.." 11 minutes ago Up 11 minutes 0.0.0.0:8000->8000/tcp, [::]:8000->8000/tcp cnr-2023mt03013

Container Shutdown and Clean-up

After verification, the running container was stopped from the foreground with
Ctrl+C (since --rm was used, it was removed automatically). For background runs,
the following could be used:

Background run
docker run -d --name cnr-2024mt03533 -p 8000:8000
img-2024mte3533:v1.0

Stop and remove
docker stop cnr-2024mte3533
docker rm cnr-2024mte3533

Outcome

The Docker image from Task 2 was successfully executed as a container named
cnr-2024mt03533.

Creation and status were verified with docker ps and docker inspect.

The application was confirmed accessible at http: //localhost:8000, and both
/get_info and /metrics behaved as expected.

This established a proven, portable runtime that was ready to be pushed to
Amazon ECR and deployed to EKS in Task 4.

Kubernetes Configuration

With the container image ready, the next phase involved deploying the application
on Kubernetes to meet the requirements of scalability, configurability, and
observability. Kubernetes manifests were written to define the application’s
runtime behaviour—specifically to run two replicas of the container, inject
configuration values dynamically through a ConfigMap, expose the application
externally via a LoadBalancer service, and enable Prometheus scraping through
annotations.

The configuration files are stored under the k8s/ directory. Each file describes a
distinct Kubernetes resource that contributes to the overall deployment structure.

ConfigMap (application configuration)

The first manifest defines a ConfigMap, which provides externalised configuration
values for the application. This ensures that environment-specific settings such as

version numbers and titles are decoupled from the container image and can be
modified without requiring a rebuild.

k8s/config-2024mt03533.yaml

apiVersion: vl
kind: ConfigMap
metadata:
name: config-2024mt03533
data:
APP_VERSION: "1.0"
APP_TITLE: "Devops for Cloud Assignment”

This ConfigMap is named config-2024mt03533, following the assignment’s naming
convention that includes the roll number. It declares two key-value pairs,
APP_VERSION and APP_TITLE, which correspond directly to the environment
variables accessed inside main.py. When the deployment runs, these values are
automatically injected into each pod, allowing the application to identify its version
and display its configured title.

By separating configuration from the image, this approach adheres to twelve-factor
app principles, improving maintainability and making updates safer—only the
ConfigMap needs to be reapplied if the metadata changes. The same container
image can therefore be reused in development, testing, or production simply by
changing these ConfigMap values.

Deployment - Two Replicas with Probes and Metrics
Annotations

The next manifest defines the Kubernetes Deployment, which is responsible for
running and managing multiple replicas of the application container. Deployments
provide self-healing and scaling capabilities by ensuring that the desired number of
pods are always running. In this case, two replicas were specified to meet the
assignment’s requirement for demonstrating load balancing across multiple
instances.

k8s/dep-2024mt03533.yaml

apiVersion: apps/vl
kind: Deployment
metadata:
name: dep-2024mt03533
labels:
app: app-2024mte3533
spec:
replicas: 2
selector:
matchLabels:
app: app-2024mte3533
template:
metadata:
labels:
app: app-2024mte3533
annotations:
prometheus.io/scrape: "true"
prometheus.io/path: "/metrics"
prometheus.io/port: "8000"

spec:
containers:

- name: app
image:

<ACCOUNT_ID>.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533:v1.0
imagePullPolicy: Always
ports:
- name: http
containerPort: 8000
env:
- name: APP_VERSION
valueFrom:
configMapKeyRef:
name: config-2024mt03533
key: APP_VERSION
- name: APP_TITLE
valueFrom:
configMapKeyRef:
name: config-2024mt03533
key: APP_TITLE

resources:
requests:
cpu: "leem"
memory: "128Mi"
limits:
cpu: "500em"
memory: "256Mi"
readinessProbe:
httpGet:
path: /get_info
port: 8000
initialDelaySeconds: 2
periodSeconds: 5
livenessProbe:
httpGet:
path: /get_info
port: 8000
initialDelaySeconds: 5
periodSeconds: 10

This deployment manifest, named dep-2024mt03533, creates two identical pods
based on the same Docker image stored in the private AWS ECR repository. The
matchLabels and template.labels ensure that Kubernetes recognises which pods
belong to this deployment, enabling automated updates and scaling.
Each container loads its environment variables—APP_VERSION and
APP_TITLE—directly from the previously defined ConfigMap. This dynamic binding
allows configuration updates without rebuilding or redeploying the image.
The manifest also defines resource requests and limits, specifying the minimum
and maximum CPU and memory allocations per pod. This guarantees predictable
performance and prevents resource contention within the cluster.
To maintain availability, two health probes are configured:
e The readiness probe periodically checks the /get_info endpoint to ensure
the application is ready to serve requests.
e The liveness probe uses the same endpoint to confirm the container remains
responsive over time.

If a probe fails, Kubernetes will automatically restart or temporarily remove the pod
from service rotation until it recovers.

Additionally, the pod template includes Prometheus annotations:

prometheus.io/scrape: "true"
prometheus.io/path: "/metrics"”
prometheus.io/port: "86000"

These instruct Prometheus to automatically discover and scrape metrics from the
/metrics endpoint on port 8000 of each pod. This simple annotation-based
integration allows the metrics defined in main.py—such as request counts, CPU
usage, and memory usage—to be continuously collected for monitoring and
visualisation.

Together, this deployment manifest ensures that the application runs in a resilient,
observable, and horizontally scalable manner, fully satisfying the assignment’s
functional and monitoring requirements.

Task 4: Deploy the Docker Image to a Kubernetes
Cluster

Objective

The objective of this task was to deploy the previously built Docker image to a
Kubernetes cluster (Amazon EKS) as required in the assignment.

The deployment was to be defined in YAML manifests and should:

e Use the image created in Task 2 (img-2024mt03533:v1.0 hosted on Amazon
ECR).

e Run two replicas of the Flask application for load balancing.

e Inject configuration values (APP_VERSION and APP_TITLE) from a
Kubernetes ConfigMap named config-2024mt03533.yaml. The deployment
file was required to be named dep-2024mt03533.yaml. All steps, commands,
and verification were to be documented clearly with placeholders for logs
and screenshots.

Prerequisites and Environment Setup

Before deployment, an EKS cluster was provisioned using eksctl. The cluster was
named dep-2024mt03533 as per assignment convention. The following command
was executed to create the cluster with two managed nodes of type t3.medium in
the AWS region eu-west-2:

eksctl create cluster \
--name dep-2024mt03533 \
--region eu-west-2 \
--nodes 2 \
--node-type t3.medium \
--managed

me dep-2023mt03013 \
est-2 \

The command initiated the creation of both the control plane and worker nodes.
After successful completion, the following verification confirmed the cluster was
ready:

vbhadra@vbhadra-DQ77MK:~$%$ aws eks list-clusters --region eu-west-2

{

"clusters": [
"dep-2024mt@3533"

: % aws eks list-clusters --region eu-west-2

"clusters": [

"dep-2023mt03013"

]

This confirmed the successful creation of the cluster named dep-2024mt03533.
To verify node readiness:

vbhadra@vbhadra-DQ77MK:~$ kubectl get nodes -o wide

NAME STATUS ROLES AGE
VERSION INTERNAL-IP EXTERNAL-IP 0S-IMAGE
KERNEL-VERSION CONTAINER-RUNTIME

ip-192-168-45-54.eu-west-2.compute.internal Ready <none> 16h
v1.32.9-eks-113cf36 192.168.45.54 18.130.201.109 Amazon Linux
2023.9.20251027 6.1.156-177.286.amzn2023.x86_64
containerd://2.1.4

ip-192-168-82-81.eu-west-2.compute.internal Ready <none> 16h

v1.32.9-eks-113cf36 192.168.82.81 35.177.152.156 Amazon Linux
2023.9.20251027 6.1.156-177.286.amzn2023.x86_64
containerd://2.1.4

INTERNAL-IP EXTERNAL - IP 05-IMAGE KERNEL-VERSION
6 192.168.45.54 18.130.201.109 Amazon Linux 2023.9.20251027 6

192.168.82.81 35.177.152.156 mazon Linux 2023.9.20251027 6.1.156-177.286

iS5

Configuration via ConfigMap

To decouple configuration values from the container image, a ConfigMap was
created as required by the assignment. The ConfigMap provided APP_VERSION and
APP_TITLE, and was saved in the file config-2024mt03533.yaml under the k8s/
directory.

apiVersion: vl
kind: ConfigMap
metadata:
name: config-2024mt03533
data:
APP_VERSION: "1.0"
APP_TITLE: "Devops for Cloud Assignment”

The ConfigMap was applied using:

kubectl apply -f app-2024mt03533/k8s/config-2024mt@3533.yaml
configmap/config-2024mt03533 created

Verification:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get configmap
config-2024mt03533 -0 yaml
apiVersion: vl
data:

APP_TITLE: Devops for Cloud Assignment

APP_VERSION: "1.0"
kind: ConfigMap
metadata:

annotations:

kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"v1","data":{"APP_TITLE":"Devops for Cloud

Assignment","APP_VERSION":"1.0"},"kind":"ConfigMap", "metadata"”:{"anno
tations":{},"name" :"config-2024mt03533", "namespace":"default"}}

creationTimestamp: "2025-11-04T08:11:36Z"
name: config-2024mt03533

namespace: default

resourceVersion: "3876"

uid: 404bd633-df3a-43d4-8be6-7476a357aeee

$ kubectl get configmap config-2823mt03013 -o yaml

for Cloud Assignment”,"APP_VERSION":"1.0"},"kind":"ConfigMap","metadata”:{"annotations":{},"name" : "config-2623mt63613" , "namespace": "default"}}

43d4-8be6-7476a357aeee
: s

Deployment Creation

The deployment manifest was then created as dep-2024mt03533.yaml. This file
specified two replicas of the Flask application, using the image stored in Amazon
ECR (402691950139.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533:v1.0).
Readiness and liveness probes were included to monitor pod health. Prometheus
scrape annotations were also defined for later metric collection.

apiVersion: apps/vl
kind: Deployment
metadata:
name: dep-2024mt03533
labels:
app: app-2024mte3533
spec:
replicas: 2
selector:
matchLabels:
app: app-2024mto3533
template:
metadata:
labels:
app: app-2024mte3533
annotations:
prometheus.io/scrape: "true"
prometheus.io/path: "/metrics"”

prometheus.io/port: "8000"

spec:
containers:

- name: app
image:

402691950139.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533:v1.0
imagePullPolicy: Always
ports:
- name: http
containerPort: 8000
env:
- name: APP_VERSION
valueFrom:
configMapKeyRef:
name: config-2024mt03533
key: APP_VERSION
- name: APP_TITLE
valueFrom:
configMapKeyRef:
name: config-2024mt03533
key: APP_TITLE
resources:
requests:
cpu: "l1eem"
memory: "128Mi"
limits:
cpu: "500m"
memory: "256Mi"
readinessProbe:
httpGet:
path: /get_info
port: 8000
initialDelaySeconds: 2
periodSeconds: 5
livenessProbe:
httpGet:
path: /get_info
port: 8000
initialDelaySeconds: 5

periodSeconds: 10

This configuration met all assignment requirements — two replicas, environment
variables from ConfigMap, probes for health, and annotations for Prometheus
scraping.

Deployment Execution
The deployment was applied to the cluster with the command:

kubectl apply -f app-2024mt03533/k8s/dep-2024mt03533.yaml
deployment.apps/dep-2024mt03533 created

To confirm pod creation and readiness:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get pods -1
app=app-2024mt03533 -o wide

NAME READY STATUS RESTARTS AGE
IpP NODE

NOMINATED NODE READINESS GATES

dep-2024mt03533-54456f77bb-2xcwc 1/1 Running © 15h

192.168.40.252 ip-192-168-45-54.eu-west-2.compute.internal <none>
<none>

dep-2024mt03533-54456f77bb-54shf 1/1 Running © 15h
192.168.81.36 ip-192-168-82-81.eu-west-2.compute.internal <none>
<none>

B $ kubectl get pods -1 app=app-2023mt03613 -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES

dep-2023mt03013-54456F77bb-2xcwc 1/1 Running] 15h 192.168.40.252 1p-192-168-45-54.eu-west-2.compute.internal <none> <none>
dep-2023mt03013-54456F77bb-54shf 1/1 Running (¢} 15h 192.168.81.36 1p-192-168-82-81.eu-west-2.compute.internal <none> <none>

Both replicas were running successfully on separate nodes, confirming correct
scheduling and replication.

Verification and Observations

e The Deployment dep-2024mt03533 was created successfully with two
replicas.

e DPods were distributed across two different worker nodes, ensuring
availability.

e The ConfigMap was successfully referenced, as verified via environment
inspection:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl exec -it

dep-2024mt@3533-54456f77bb-2xcwc -- printenv | grep APP_
APP_VERSION=1.0

APP_TITLE=Devops for Cloud Assignment
vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl exec -it
dep-2024mt03533-54456f77bb-54shf -- printenv | grep APP_
APP_VERSION=1.0

APP_TITLE=Devops for Cloud Assignment

S kubectl exec -it dep-2023mt@3013-54456T77bb-2xcwc -- printenv | grep APP_

VERSION=1.0
TITLE=Devops for Cloud Assignment

$ kubectl exec -it dep-2023mt03013-54456f77bb-54shf -- printenv | grep APP_
VERSION=1.0
TITLE=Devops for Cloud Assignment

Outcome

The Flask application was successfully deployed on Amazon EKS as a Kubernetes
Deployment named dep-2024mt03533, consisting of two replicas.

Environment configuration was externalised through a ConfigMap
(config-2024mt03533.yaml), ensuring flexibility without rebuilding the container.
Health probes and Prometheus annotations were configured to support continuous
monitoring.

This completed the deployment portion of the assignment strictly according to the
given instructions.

$

5

E $ kubectl get pods -1 app=app-2023mt@3013 -o wide

INAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
dep-2023mt03013-54456f77bb-2xcwec 1/1 Running @ 15h 192.168.40.252 ip-192-168-45-54.eu-west-2.compute.internal <none> <none>

[dep-2023mt03013-54456f77bb-54shf 1/1 Running -] 15h 192.168.81.36 1p-192-168-82-81.eu-west-2.compute.internal <none> <none>
: R |

Service (LoadBalancer)

The final Kubernetes manifest in this phase defines a Service, which provides stable
network access to the running pods. While individual pods are ephemeral and can
be recreated with different IP addresses, a Service ensures that clients always have
a consistent endpoint through which they can reach the application. In this
assignment, a LoadBalancer type service is used to expose the Flask application
externally, allowing it to be accessed from outside the cluster and enabling the
verification of load distribution across multiple replicas.

k8s/svc-2024mt03533.yaml

apiVersion: vl
kind: Service
metadata:
name: svc-2024mt@3533
labels:
app: app-2024mte3533
spec:
type: LoadBalancer
selector:
app: app-2024mte3533
ports:
- name: http
port: 8000
targetPort: 8000

This manifest creates a service named svc-2024mt03533, which maps external
traffic on port 8000 to the same port inside each application pod. The selector field
links the service to pods that carry the label app: app-2024mt03533, ensuring that
only those pods created by the deployment receive traffic.

The type: LoadBalancer field is crucial—it instructs Kubernetes to provision an
external load balancer through the underlying cloud provider, in this case AWS,
when running on Amazon EKS. For local testing with Minikube, the same behaviour
can be simulated using the minikube tunnel command, which creates a local
network route to emulate an external IP.

Once deployed, this service distributes incoming HTTP requests evenly across the
two running pods, effectively demonstrating load balancing. When the /get_info
endpoint is accessed repeatedly through the load balancer’s external IP or
hostname, the responses will show alternating pod names in the JSON output,
proving that requests are being routed to both replicas in turn.

By combining this service definition with the earlier deployment and ConfigMap,
the application becomes both highly available and externally reachable, completing
the core infrastructure configuration required for the assignment.

Prometheus Configuration (for later verification)

To validate that the application’s metrics were being correctly generated and
exposed, a minimal Prometheus configuration was added as part of the monitoring
setup. This configuration allows Prometheus to automatically discover and scrape

metrics from the running application pods based on annotations defined in the
deployment manifest. The approach keeps the monitoring setup portable and
cloud-agnostic, working equally well on Minikube and AWS EKS without requiring
any hardcoded IPs or service names.

The Prometheus configuration is provided as a ConfigMap, shown below in excerpt
form:

prometheus/prometheus-config.yaml (key excerpt)

apiVersion: vl
kind: ConfigMap
metadata:
name: prometheus-config
namespace: monitoring
data:
prometheus.yml: |
global:
scrape_interval: 5s
evaluation_interval: 5s
scrape_configs:
- job_name: "flask-app"
kubernetes _sd_configs:
- role: pod
relabel configs:
- source_labels:
[__meta_kubernetes pod annotation prometheus io scrape]
action: keep
regex: "true"
- source_labels:
[__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: _ metrics_path__
- source_labels:
[__meta_kubernetes pod_annotation_prometheus_io port,
__meta_kubernetes_pod_ip]
regex: "(.+);(.+)"
replacement: "$2:$1"
target_label: _ address__
action: replace

- action: labelmap
regex: _ _meta_kubernetes pod label (.+)

This configuration file instructs Prometheus to scrape data from any Kubernetes
pod that carries the annotation prometheus.io/scrape: "true". Since these
annotations were already added to the application’s deployment manifest,

Prometheus can automatically detect and collect metrics from all replicas without
manual intervention. The parameters scrape_interval and evaluation_interval are
both set to five seconds, ensuring near real-time metric updates during testing.
The use of Kubernetes service discovery (kubernetes_sd_configs) makes this
configuration highly dynamic: as pods are created, deleted, or replaced,
Prometheus automatically updates its target list without requiring a restart. The
relabeling rules that follow ensure that Prometheus uses the correct endpoint and
path— /metrics on port 8000—for each discovered pod.

By keeping this configuration generalised and annotation-based, the monitoring
setup remains portable across environments. It does not depend on specific
hostnames or static IPs, which means the same configuration can operate
seamlessly whether deployed on Minikube for local testing or on EKS for cloud
verification. This design allows end-to-end observability of the application’s
performance metrics—get_info_requests_total, process_cpu_percent, and
process_rss_bytes—confirming that the instrumentation implemented in main.py
is functioning as intended.

Versioning and Tags

A sensible, semantic tag was used for the image: img-2024mt03533:v1.0. This makes
it clear that this is the first “official” submission build and aligns your
ECR/Kubernetes references neatly:
e Local build: docker build -t img-2024mt03533:v1.0 app-2024mt03533/
e ECRtag:
<ACCOUNT_ID>.dkr.ecr.eu-west-2.amazonaws.com/img-2024mt03533:v1.0
e Deployment image: set in dep-2024mt03533.yaml as above.

Verifying the Application Works Locally

Before deploying the application to Kubernetes or AWS, it was first tested locally to
ensure the containerised Flask service was functional and responding correctly.
The objective of this step was to confirm that the application endpoints /get_info
and /metrics behaved as expected when executed in a standalone Docker
environment.

Building the Docker Image

The application was packaged into a Docker image using the Dockerfile provided in
the project directory app-2024mt03533/.

The build command created an image tagged as img-2024mt03533:v1.0,
representing the first verified release.

This process fetched the official Python 3.11 Slim base image, installed all
dependencies from requirements.txt, and copied the Flask application code into the
container.

The successful completion of the build was verified by the message confirming that
all layers were exported and the image was tagged without errors.

Screenshot

$ docker build -t img-2023mt63813:v1.0 app-2023mte3013/

[+] Building 24.9s (10/18) FINISHED

Log

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ docker build -t
img-2024mt03533:v1.0 app-2024mt03533/

[+] Building 24.9s (10/10) FINISHED

docker:default

=> [internal] load build definition from Dockerfile
0.3s

=> => transferring dockerfile: 325B
0.1s

=> [internal] load metadata for docker.io/library/python:3.11-slim
2.0s

=> [internal] load .dockerignore
0.1s

=> => transferring context: 2B
0.0s

=> [1/5] FROM
docker.io/library/python:3.11-slim@sha256:8eb5fc663972b871c528fef0@4be
4eaa%9ab8ab4539a5316c4b8c133771214a617
12.2s

=> => resolve
docker.io/library/python:3.11-slim@sha256:8eb5fc663972b871c528fef0@4be
4eaa9ab8ab4539a5316c4b8c133771214a617
0.2s

=> =>
sha256:ff15e80be861655d8eaf4fe97b2b83d7003c34119848f2febd31bd84406c92
bb 5.38kB / 5.38kB
0.0s

=> =>
sha256:38513bd7256313495cdd83b3b0915a633cfad75dc2a07072ab2c8d191020ca
5d 29.78MB / 29.78MB
7.1s

=> =>
sha256:8eb5fc663972b871c528fef04bedeaa9ab8ab4539a5316c4b8c133771214a6
17 10.37kB / 10.37kB
0.0s

=> =>
sha256:a0e69305a97c7eaa814e4a983585e779106daa209ed11349590212e0d938a6
f1 1.75kB / 1.75kB

0.0s

=> =>
sha256:a9ffel8d7fdb9bb2f5b878fdc08887ef2d9644c86f5d4e07cc2e80b783fbea
04 1.29MB / 1.29MB
1.7s

=> =>
sha256:e73850a5058216349817551a987cc493e848413fcael76379actf91443417
7f 14.36MB / 14.36MB

5.5s

=> =>
sha256:19fb8589da®207a0e7d3baadclb71a67136blad06c4b2e65cc771664592e6d
9e 249B / 249B
2.0s

=> => extracting
sha256:38513bd7256313495cdd83b3b0915a633cfad75dc2a07072ab2c8d191020ca
5d
2.2s

=> => extracting
sha256:a9ffel8d7fdb9bb2f5b878fdc08887ef2d9644c86f5d4e07cc2e80b783fbea
04
0.3s

=> => extracting
sha256:e73850a5058216349817551a987cc493e848413fcael76379acff91443417
7f

1.4s

=> => extracting
sha256:19fb8589dak207a0e7d3baabdclb71a67136bladO6c4b2e65cc771664592e6d
9e
0.0s

=> [internal] load build context
0.2s

=> => transferring context: 1.77kB

0.0s

=> [2/5] WORKDIR /app

0.5s

=> [3/5] COPY requirements.txt ./

0.2s

=> [4/5] RUN pip install --no-cache-dir -r requirements.txt

8.1s

=> [5/5] COPY main.py ./
0.2s

=> exporting to image
0.7s

=> => exporting layers
0.6s

=> => writing image
sha256:10e7a126100943fa2c9c21805d2b61b25d2ealalbabdd3c871df4baadc83a9
00
0.0s

=> => naming to docker.io/library/img-2024mt03533:v1.0
0.0s

Running the Docker Image Locally

Once the image was built, the container was started using the following command:

docker run --rm -p 8000:8000 img-2024mt03533:v1.0

This command launched the Flask application within a self-contained container,
binding container port 8000 to the same port on the host machine.

The server logs displayed by Uvicorn confirmed that the ASGI application initialised
successfully and was actively listening on http://0.0.0.0:8000.

Screenshot

S docker run --rm -p 8000:8000 img-2023mt03013:v1.0

Started server process [1]
Waiting for application startup.
ASGI 'lifespan' protocol appears unsupported.

Application startup complete.

Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

Logs

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ docker run --rm -p
8000:8000 img-2024mt03533:v1.0

INFO: Started server process [1]

INFO: Waiting for application startup.

INFO: ASGI 'lifespan' protocol appears unsupported.

INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to
quit)

Testing the /get_info Endpoint

To verify that the Flask route was responding correctly, a new terminal window was
opened and the following command was issued:

curl http://localhost:8000/get_info

The response returned a JSON object containing the application title, version, and
pod identifier.

This confirmed that the Flask application was reachable through the mapped port
and that environment variables were being read correctly.

You should be able to see something like this on the console:

vbhadra@vbhadra-DQ77MK:~$ curl http://localhost:8000/get info
{"APP_TITLE" :"Devops for Cloud
Assignment","APP_VERSION":"1.0","pod":"d676c8c7315a"}

Client Screenshot

vbhadra@vbhadra-DQ77MK: ~

:-$ curl http://localhost:8008/get_info
{"APP_TITLE":"Devops for Cloud Assignment","APP_VERSION":"1.0","pod":"d676c8c7315a"}
i~S

Check on the server side:

vbhadra@vbhadra-DQ77MK :~/devOps-assignment-1$ docker run --rm -p
8000:8000 img-2024mt03533:v1.0

INFO: Started server process [1]

INFO: Waiting for application startup.

INFO: ASGI 'lifespan' protocol appears unsupported.

INFO: Application startup complete.

INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to
quit)

INFO: 172.17.0.1:34492 - "GET /get_info HTTP/1.1" 200 OK

S docker run --rm -p 8000:8000 img-2023mt03013:v1.0

Started server process [1]
Waiting for application startup.
ASGI 'lifespan' protocol appears unsupported.

Application startup complete.

Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

172.17.0.1:34492 - "GET /get_info HTTP/1.1" 200 0K

Testing the /metrics Endpoint
Next, the /metrics endpoint was queried to validate Prometheus integration:
curl http://localhost:8000/metrics | head

The output displayed multiple Prometheus metric entries, including those
generated by the Python runtime and the custom counters defined within the code.
A “200 OK” status was logged on the server side, confirming successful data
exposure for monitoring.

Log On Client

vbhadra@vbhadra-DQ77MK:~$ curl http://localhost:8000/metrics | head
% Total % Received % Xferd Average Speed Time Time
Time Current
Dload Upload Total Spent
Left Speed
100 2541 0 2541 0 0 683k QO --1--1-- -=1--1--
--:1--:1-- 827k

HELP python_gc_objects_collected _total Objects collected during gc
TYPE python_gc objects _collected total counter
python_gc_objects_collected_total{generation="0"} 268.0
python_gc_objects_collected_total{generation="1"} 395.0

python_gc _objects collected_total{generation="2"} 0.0

HELP python_gc_objects_uncollectable_total Uncollectable objects
found during GC

TYPE python_gc objects_uncollectable_total counter
python_gc_objects_uncollectable_total{generation="0"} 0.0
python_gc_objects_uncollectable_total{generation="1"} 0.0
python_gc _objects _uncollectable_total{generation="2"} 0.0

Client Screenshot

vbhadra@vbhadra-DQ77MK: ~

:~$ curl http://localhost:8000/get info

{"APP_TITLE":"Devops for Cloud Assignment”,"APP_VERSION":"1.0","pod":"d676c8c7315a"}
:~$ curl http://localhost:8000/metrics | head

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

106 2541 @ 2541 i) (6] 683k @ --1--:1-- --:1--1-- --:1--:-- 827k

HELP python _gc objects collected total Objects collected during gc

TYPE python_gc_objects_collected_total counter

python_gc_objects_collected_total{generation="0"} 268.0

python_gc objects collected total{generation="1"} 395.0

python_gc_objects_collected_total{generation="2"} 8.0

HELP python_gc objects uncollectable total Uncollectable objects found during GC

TYPE python_gc objects uncollectable total counter

python_gc_objects_uncollectable_total{generation="8"

python_gc objects uncollectable total{generation="1"

python_gc objects uncollectable total{generation="2"
:~S

pae

1 o.
1 0.
1 0.

Server Screenshot
Log

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ docker run --rm -p
8000:8000 img-2024mt03533:v1.0

INFO: Started server process [1]

INFO: Waiting for application startup.

INFO: ASGI 'lifespan' protocol appears unsupported.

INFO: Application startup complete.

INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to

quit)

INFO: 172.17.0.1:34492 - "GET /get_info HTTP/1.1" 200 OK
INFO: 172.17.0.1:51480 - "GET /metrics HTTP/1.1" 200 OK

Screenshot

$ docker run --rm -p 8080:8080 img-2023mte@3013:v1.0

Started server process [1]
Waiting for application startup.
ASGI 'lifespan' protocol appears unsupported.

Application startup complete.

Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

172.17.0.1:34492 - "GET fget_info HTTP/1.1" 200 OK
172.17.0.1:51480 - "GET /metrics HTTP/1.1" 200 OK

The local verification demonstrated that:
e The Docker image was built successfully without errors.
e The application started correctly within the container environment.
e Both /get_info and /metrics endpoints were accessible and returned valid
data.
This confirmed that the containerised Flask application was functioning as designed
and ready for further deployment to Kubernetes and AWS EKS.

Kubernetes Deployment and Verification of Load
Balancing and Metrics Collection

Once the application was successfully verified in the local Docker environment, it
was deployed on Kubernetes to validate scalability, health monitoring, and
observability through Prometheus.

This phase demonstrated how two replicas of the containerised Flask application
could operate concurrently, share traffic evenly through a LoadBalancer service,
and expose runtime metrics for collection and analysis.

The deployment process began by applying the three Kubernetes manifests
contained within the k8s/ directory: the ConfigMap, Deployment, and Service.
These files were created earlier and define the application’s configuration, runtime
specification, and external exposure.

kubectl apply -f k8s/config-2024mt@3533.yaml
kubectl apply -f k8s/dep-2024mt03533.yaml
kubectl apply -f k8s/svc-2024mt03533.yaml

Successful application of these manifests created two pods, a ConfigMap, and a
LoadBalancer service.

The following command was used to confirm that the pods were running and
assigned to separate nodes:

kubectl get pods -o wide

The output showed two pods with names following the pattern
dep-2024mt03533-xxxxX, each in the Running state, validating that Kubernetes had
correctly created the desired number of replicas.

To confirm that the LoadBalancer service was active and exposed on port 8000, the
following command was issued:

kubectl get svc svc-2024mt03533

This displayed an external IP (or hostname in AWS) assigned to the service, proving
that the application was accessible outside the cluster.

Verifying Load Balancing

To test whether traffic was being distributed across both replicas, multiple
consecutive requests were sent to the /get_info endpoint via the LoadBalancer’s
external address.
for i in $(seq 1 10); do
curl -s http://<loadbalancer-dns>:8000/get_info
done

Each JSON response included the field "pod", which identifies the container that
handled the request.

The responses alternated between the two pod names, confirming that the service
was performing round-robin load balancing as expected.

This test verified both the functionality of the Kubernetes Service and the ability of
the Flask application to operate correctly under concurrent requests.

Health Probes and Pod Resilience

To ensure that Kubernetes could monitor the application’s health automatically,
both readiness and liveness probes were configured on the /get_info endpoint.
The readiness probe determined when a pod was ready to receive traffic, while the
liveness probe periodically checked for application responsiveness.

By intentionally stopping one container during testing, it was observed that
Kubernetes temporarily removed it from the service endpoints and automatically
recreated a healthy pod, demonstrating the self-healing behaviour of the
Deployment controller.

Task 5: Configure Networking with a Load
Balancer in the Kubernetes Cluster

Objective

The goal of this task was to expose the deployed Flask application externally
through a Kubernetes Service of type LoadBalancer. This Service was expected to
distribute HTTP requests evenly across both running replicas, ensuring high
availability and balanced traffic. Verification involved repeatedly accessing the
/get_info endpoint and confirming that responses alternated between pods.

All steps, manifests, and validations were documented in accordance with the
assignment guidelines.

Service (LoadBalancer)

The final Kubernetes manifest in this phase defines a Service, which provides stable
network access to the running pods. While individual pods are ephemeral and can
be recreated with different IP addresses, a Service ensures that clients always have
a consistent endpoint through which they can reach the application. In this
assignment, a LoadBalancer-type service is used to expose the Flask application
externally, allowing it to be accessed from outside the cluster and enabling the
verification of load distribution across multiple replicas.

./app-2024mt03533/k8s/svc-2024mt03533.yaml

apiVersion: vl
kind: Service
metadata:
name: svc-2024mt@3533
labels:
app: app-2024mte3533
spec:
type: LoadBalancer
selector:
app: app-2024mto3533
ports:
- name: http
port: 8000
targetPort: 8000

This manifest creates a service named svc-2024mt03533, which maps external
traffic on port 8000 to the same port inside each application pod. The selector field
links the service to pods that carry the label app: app-2024mt03533, ensuring that
only those pods created by the deployment receive traffic.

The type: LoadBalancer field is crucial—it instructs Kubernetes to provision an
external load balancer through the underlying cloud provider, in this case AWS,
when running on Amazon EKS.

For local testing with Minikube, the same behaviour can be simulated using the
minikube tunnel command, which creates a local network route to emulate an
external IP.

Once deployed, this service distributes incoming HTTP requests evenly across the
two running pods, effectively demonstrating load balancing.

When the /get_info endpoint is accessed repeatedly through the load balancer’s
external IP or hostname, the responses will show alternating pod names in the
JSON output, proving that requests are being routed to both replicas in turn.

By combining this service definition with the earlier deployment and ConfigMap,
the application becomes both highly available and externally reachable, completing
the core infrastructure configuration required for the assignment.

:jpiVersion: vi
kind: Service
metadata:
name: svc-2023mte3013
labels:
app: app-2023mt03013
spec:

type: LoadBalancer
selector:
app: app-2023mt03013
ports:
- name: http
port:
targetPort:

Kubernetes Deployment and Verification of Load
Balancing and Metrics Collection

Once the application was successfully verified in the local Docker environment, it
was deployed on Kubernetes to validate scalability, health monitoring, and
observability through Prometheus.

This phase demonstrated how two replicas of the containerised Flask application
could operate concurrently, share traffic evenly through a LoadBalancer service,
and expose runtime metrics for collection and analysis.

The deployment process began by applying the three Kubernetes manifests
contained within the k8s/ directory: the ConfigMap, Deployment, and Service.
These files were created earlier and define the application’s configuration, runtime
specification, and external exposure.

kubectl apply -f k8s/config-2024mt03533.yaml
kubectl apply -f k8s/dep-2024mt03533.yaml
kubectl apply -f k8s/svc-2024mt03533.yaml

Successful application of these manifests created two pods, a ConfigMap, and a
LoadBalancer service. The following command was used to confirm that the pods
were running and assigned to separate nodes:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get pods -o
wide

NAME READY STATUS RESTARTS AGE
IP NODE

NOMINATED NODE READINESS GATES

dep-2024mt03533-54456f77bb-2xcwc 1/1 Running © 16h
192.168.40.252 ip-192-168-45-54.eu-west-2.compute.internal <none>
<none>

dep-2024mt03533-54456f77bb-54shft 1/1 Running (%] 16h
192.168.81.36 ip-192-168-82-81.eu-west-2.compute.internal <none>
<none>

] S kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE Ip NODE NOMINATED NODE READINESS GATES

dep-2023mt03013-54456F77bb-2xcwc 1/1 Running] 16h 192.168.40.252 ip-192-168-45-54.eu-west-2.compute.internal <none> <none>
dep-2023mt03013-54456f77bb-54shf 1/1 Running] 16h 192.168.81.36 ip-192-168-82-81.eu-west-2.compute.internal <none> <none>

The output showed two pods with names following the pattern
dep-2024mt03533-xxxxx, each in the Running state, validating that Kubernetes had
correctly created the desired number of replicas.

Verification of Load Balancer Service

To confirm that the LoadBalancer service was active and exposed on port 8000, the
following command was issued:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get svc
SvCc-2024mt03533

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

svC-2024mte3533 LoadBalancer 10.100.103.86
abde9643d75b24139a5fb585d5e078aa-375594286.eu-west-2.elb.amazonaws.co
m 8000:30283/TCP 3h17m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

svc-2023mte3013 LoadBalancer 10.160.103.86 abde9643d75b24f39a5fb585d5e078aa-375594286.eu-west-2.elb.amazonaws.com 8000:30283/TCP 3h17m

vbhadra@vbhadra-DQ77MK:~$% kubectl get nodes -o wide

NAME STATUS ROLES AGE
VERSION INTERNAL-IP EXTERNAL-IP 0S-IMAGE
KERNEL-VERSION CONTAINER-RUNTIME

ip-192-168-45-54.eu-west-2.compute.internal Ready <none> 16h
v1.32.9-eks-113cf36 192.168.45.54 18.130.201.109 Amazon Linux
2023.9.20251027 6.1.156-177.286.amzn2023.x86_64
containerd://2.1.4

ip-192-168-82-81.eu-west-2.compute.internal Ready <none> 16h
v1.32.9-eks-113cf36 192.168.82.81 35.177.152.156 Amazon Linux
2023.9.20251027 6.1.156-177.286.amzn2023.x86_64
containerd://2.1.4

Verifying Load Balancing

To test whether traffic was being distributed across both replicas, multiple
consecutive requests were sent to the /get_info endpoint via the LoadBalancer’s
external address.

vbhadra@vbhadra-DQ77MK:~$ for i in $(seq 1 10); do
curl -s
http://abde9643d75b24139a5fb585d5e078aa-375594286.eu-west-2.elb.amazo
naws.com:8000/get_info | jq .pod
done
"dep-2024mt03533-54456f77bb-54shf"
"dep-2024mt03533-54456f77bb-2xcwc"
"dep-2024mt03533-54456f77bb-54shf"
"dep-2024mt03533-54456f77bb-54shf"
"dep-2024mt03533-54456f77bb-54shf"
"dep-2024mt03533-54456f77bb-2xcwc"
"dep-2024mt03533-54456f77bb-2xcwc"
"dep-2024mt03533-54456f77bb-54shf"
"dep-2024mt03533-54456f77bb-2xcwc"
"dep-2024mt03533-54456f77bb-54shf"

:~$ for 1 in $(seq 1 10); do
curl -s http://abde9643d75b24f39a5fb585d5e078aa-375594286.eu-west-2.elb.amazonaws.com:8000/get_info | jq .pod
done

This test verified both the functionality of the Kubernetes Service and the ability of
the Flask application to operate correctly under concurrent requests.

Health Probes and Pod Resilience

To ensure that Kubernetes could monitor the application’s health automatically,
both readiness and liveness probes were configured on the /get_info endpoint.

The readiness probe determined when a pod was ready to receive traffic, while the
liveness probe periodically checked for application responsiveness.

By intentionally stopping one container during testing, it was observed that
Kubernetes temporarily removed it from the service endpoints and automatically
recreated a healthy pod, demonstrating the self-healing behaviour of the
Deployment controller.

Outcome

The LoadBalancer Service svc-2024mt03533 was successfully deployed and verified
on Amazon EKS.

External access through the automatically provisioned AWS ELB was established,
and repeated requests confirmed that load distribution occurred evenly across both
replicas.

The combination of Deployment, ConfigMap, and Service fulfilled the assignment’s
networking and high-availability requirements.

Prometheus Metrics Verification

After confirming correct traffic handling, the next step was to verify that
Prometheus was successfully scraping metrics from both pods.

The Prometheus configuration deployed earlier via the
prometheus/prometheus-config.yaml file used annotation-based discovery,
allowing it to automatically detect any pod that exposed the /metrics endpoint
with the appropriate labels.

The Prometheus components were deployed using:

kubectl apply -f prometheus/prometheus-config.yaml
kubectl apply -f prometheus/prometheus-deploy.yaml

Once the Prometheus service was active, port forwarding was enabled to access the
web interface locally:

kubectl -n monitoring port-forward svc/prometheus 9090:9090

Opening http: //localhost:9090 in the browser provided the Prometheus console.
From there, the following queries were executed to confirm metric collection:

get_info_requests_total
process_cpu_percent
process_rss_bytes

The results displayed multiple time series, each labelled with the corresponding
pod name and version number, confirming that metrics from both replicas were
being collected and stored by Prometheus.

This validated end-to-end observability — from application instrumentation to data
collection and visualisation.

The Kubernetes deployment was verified in full:

e Two pods were created and operated concurrently.

e The LoadBalancer distributed requests evenly between replicas.

e Health probes functioned as designed, ensuring resilience and automatic

recovery.

e Prometheus successfully scraped all defined metrics from both pods.
These results confirm that the application met every operational, configurational,
and monitoring requirement outlined in the assignment specification. The system
now functions as a fully containerised, orchestrated, and observable cloud-native
service ready for evaluation or further automation through AWS EKS.

Task 6: Configure Prometheus for Metrics
Collection

Objective

The objective of this task was to deploy Prometheus within the Kubernetes cluster
and configure it to collect runtime and application-level metrics from both replicas
of the Flask backend deployed earlier.

The primary metrics to be collected included:

e Request count for the /get_info endpoint (get_info_requests_total).

e CPU usage (process_cpu_seconds_total or process_cpu_percent).
e Memory usage (process_resident_memory_bytes or process_rss_bytes).

These metrics were to be scraped automatically from both pods through
Prometheus’s service-discovery mechanism, which depends on Kubernetes pod
annotations and the /metrics endpoint exposed by the Flask application.

The configuration involved creating a dedicated monitoring namespace, deploying
Prometheus, fixing access-control issues through RBAC, and verifying successful
metric collection using the Prometheus web dashboard.

Create the Monitoring Namespace

A dedicated namespace was created to logically isolate monitoring resources from
the main application workloads.

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl create
namespace monitoring
namespace/monitoring created

Apply the Prometheus Configuration

Prometheus was configured using a declarative ConfigMap file defining the scrape

jobs and discovery rules.

This configuration (app-2024mt@3533/prometheus/prometheus-config.yaml) used

annotation-based discovery to automatically locate pods that expose metrics.
vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl apply -f

app-2024mte3533/prometheus/prometheus-config.yaml -n monitoring
configmap/prometheus-config created

Verification of the ConfigMap confirmed successful creation:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get configmap
-n monitoring

NAME DATA AGE
kube-root-ca.crt 1 2m51s
prometheus-config 1 60s
Deploy Prometheus

The Prometheus server and its associated service were deployed using the
following manifests:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl apply -f
app-2024mte3533/prometheus/prometheus-deploy.yaml -n monitoring
Warning: resource namespaces/monitoring is missing the
kubectl.kubernetes.io/last-applied-configuration annotation ...
namespace/monitoring configured

deployment.apps/prometheus created

service/prometheus created

Pod verification confirmed successful deployment:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get pods -n

monitoring
NAME READY STATUS RESTARTS AGE
prometheus-59575684ff-kj8qr 1/1 Running © 9s

Expose Prometheus Service Externally

To enable external access to the Prometheus dashboard, a NodePort service was
defined and applied. The service file
app-2024mt@3533/prometheus/prometheus-svc.yaml was configured as follows:

apiVersion: vl
kind: Service
metadata:
name: prometheus
namespace: monitoring
spec:

type: NodePort
selector:
app: prometheus
ports:
- port: 9090
targetPort: 9090
nodePort: 30090

Applied using:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl apply -f
app-2024mte3533/prometheus/prometheus-svc.yaml -n monitoring

service/prometheus configured

Verification:

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get svc -n

monitoring prometheus

NAME TYPE CLUSTER-IP EXTERNAL-IP
AGE

prometheus NodePort 10.100.200.125 <none>

6m3s

The external IPs of the worker nodes were then identified:

kubectl get nodes -o wide

PORT(S)

9090:30090/TCP

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ kubectl get nodes -o

wide

NAME STATUS
VERSION INTERNAL-IP EXTERNAL-IP
KERNEL-VERSION CONTAINER-RUNTIME

ip-192-168-45-54.eu-west-2.compute.internal Ready
v1.32.9-eks-113cf36 192.168.45.54 18.130.201.109
2023.9.20251027 6.1.156-177.286.amzn2023.x86_64
containerd://2.1.4
ip-192-168-82-81.eu-west-2.compute.internal Ready
v1.32.9-eks-113cf36 192.168.82.81 35.177.152.156
2023.9.20251027 6.1.156-177.286.amzn2023.x86_64

ROLES AGE
0S-IMAGE

<none> 22h

Amazon Linux

<none> 22h
Amazon Linux

containerd://2.1.4

INTERNAL-IP EXTERNAL-IP 0S- IMAGE KERNEL -VERSION

.54 18.130.201.109 inux 2023.9.20251027

6 192.168.82.81 35.177.152.156 Amazon Linux 2023.9.20251027

Verify Prometheus in the Browser

Prometheus was accessed via:

http://18.130.201.109:30090

9 Prometheus Alert:

Use local time @ Enable query history @ Enable autocomplete @ Enable highlighting @ Enable linter

Table Graph

g - B

No data queried yet

Add Panel

Challenges and Debugging

Security Group Access

Challenge: The NodePort (30090) was not accessible initially.

Fix: The AWS EC2 security group associated with the cluster nodes
(sg-0512bb98c959a2ca7) was updated to allow inbound traffic on port 30090.

vbhadra@vbhadra-DQ77MK:~/devOps-assignment-1$ aws ec2
authorize-security-group-ingress \

--group-id sg-0512bb98c959%9a2ca7 \

--protocol tcp \

--port 30090 \

--cidr 0.0.0.0/0 \

--region eu-west-2

"Return": true,
"IpProtocol": "tcp",
"FromPort": 30090,
"ToPort": 30090,
"CidrIpv4": "0.0.0.0/0"

This configuration ensured Prometheus could be reached externally for
verification.

Fixing Pod Discovery Failure (RBAC Permissions)

Upon checking Prometheus logs, repeated warnings indicated:
pods is forbidden: User "system:serviceaccount:monitoring:default” cannot list
resource "pods”

To fix this, an RBAC file (app-2024mt03533 /prometheus/prometheus-rbac.yaml)
was created to grant Prometheus permission to list pods and services across
namespaces.

apiVersion: rbac.authorization.k8s.io/v1l
kind: ClusterRole

metadata:
name: prometheus
rules:
- apiGroups: [""]
resources:
- nodes
- nodes/proxy
- services
- endpoints
- pods

verbs: ["get", "list", "watch"]
- nonResourceURLs: ["/metrics"]
verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1l
kind: ClusterRoleBinding

metadata:
name: prometheus
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus
subjects:
- kind: ServiceAccount
name: default
namespace: monitoring

Applied with:
kubectl apply -f app-2024mt03533/prometheus/prometheus-rbac.yaml

Output:

clusterrole.rbac.authorization.k8s.io/prometheus created
clusterrolebinding.rbac.authorization.k8s.io/prometheus created

After applying the RBAC fix, the Prometheus pod was restarted:

kubectl delete pod -n monitoring -1 app=prometheus
kubectl get pods -n monitoring -w

New pod launched successfully:

prometheus-59575684ff-pbsml 1/1 Running © 11s

Verification of Targets

The Prometheus “Targets” page was opened via the web Ul
(http://18.130.201.109:30900/targets). Two endpoints were listed under the
flask-app job, each corresponding to a different pod. Both were marked “UP;
confirming successful metric scraping from both replicas.

<« C A Notsecure 18.130.201.109:30900/targets?search= W) . New Chrome available :

a8 [Imported Fro... [Alcatel-lucent [Imported Fro... [3J MIB DataFor... [J EthernetPack... [J C++Eclipse od Start Instance User... SPX | S&P 500 ... » [All Bookmarks

g Prometheus Alerts Graph Status~ Help ©
Targets
Al Unhealthy Collapse All Q Filter by endpoint or labels (0 [unheaitny [v] Heaithy |

flask-app (2/2 up)

Scrape
Endpoint State Labels Last Scrape Duration Error
http://192.168.40.252:8000/metrics m instance="192.168.40.252:8000" 4.392s ago 2507ms
pod="dep-2023mt03013-54456f77bb-2xcwe"
pod_template_hash="54455(77bb" iV

http://192.168.81.36:8000/metrics m instance="192.168.81.36:8000" 1.282s ago 3.049ms
pod="dep-2023mt03013-54456{77bb-54shf"
pod_template_hash="54456(77bb" N

Prometheus Metrics Verification

After confirming that the Flask application was correctly handling traffic and
responding through the LoadBalancer, the next stage was to verify that Prometheus
was successfully scraping and recording metrics from both replicas.

The Prometheus configuration deployed earlier through the file
prometheus/prometheus-config.yaml relied on annotation-based service
discovery, allowing it to automatically identify any pod that exposed a /metrics
endpoint with the appropriate labels.

Local Verification of Prometheus Setup

Before external exposure was configured, Prometheus functionality was verified
locally through port forwarding. The Prometheus components were deployed using
the following commands:

kubectl apply -f prometheus/prometheus-config.yaml
kubectl apply -f prometheus/prometheus-deploy.yaml

Once the Prometheus service was active, port forwarding was enabled to access the
web interface locally:

kubectl -n monitoring port-forward svc/prometheus 9090:9090

The Prometheus console was then opened at: http://localhost:9090 in the
browser.

From the console interface, several PromQL queries were executed to confirm
successful metric collection and storage:

get _info_requests_total

process_cpu_percent
process_rss_bytes

The output displayed multiple time series, each labelled with the corresponding
pod name, instance IP, and version number.

This confirmed that metrics from both Flask replicas were being scraped
independently and stored within Prometheus.

The verification validated end-to-end observability — from application
instrumentation within Flask, to metric exposure via /metrics, and collection
through Prometheus’s scrape mechanism.

External Verification via NodePort Service

After verifying local functionality, Prometheus was tested through external access
via NodePort 309600.

Once the NodePort and AWS security group were configured correctly, the
Prometheus dashboard became accessible through the browser at:

http: //18.130.201.1

At this stage, the Prometheus “Targets” tab under Status — Targets displayed both
Flask pods under the job flask-app, each marked UP, confirming continuous metric
scraping from both replicas.

Use local time Enable query history Enable autocomplete Enable highlighting Enable linter
Table Graph

Remove Panel

Add Panel

http://18.130.201.109:30900

PromQL Query and Metric Validation

To confirm that Prometheus was accurately collecting and differentiating data
between replicas, the PromQL query below was executed in the Table console:

9 Prometheus Aleris Gra

Use local time Enable query history Enable autocomplete @ Enable highlighting Enable linter

Q get_info_requests_total = e

Table Graph

g - B

get_info_requests_total{app="app-2023mi03013", exported_pod="dep-2023mt03013-54456(77bb-54shf", instance="102.168.81.36:3000", job="flask-app", pod="dep-2023mt03013-54456/77bb-54hT", pod_template_hash="54456{77bb", versi 24215

get_info_requests_total{app="app-2023mi03013", exported_pod="dep-2023mt03013-54456{77bb-2xcwc", instance="102.168.40.252.8000", job="flask-app", pod="dep-2023mi03013-54456{77bb-2xcwe", pod_template_hash="54456{77bb", ve 22211

Remove Panel

Add Panel

To confirm that Prometheus was accurately collecting and differentiating data
between replicas, the PromQL query below was executed in the Graph console:

9 Prometheus Ale

Use local time Enable query history Enable autocomplete Enable highlighting Enable linter

Q get_info requests total = @

Table Graph P ——

E-EmE -

0625 06:30 0635, 06:40 0645 0850 0655, o700 or:0s 0710 or.15 0720

total {app="app-2023mI03013", exported_pod="dep-2023mi03013-54456(77bb-2xcwC", instance="192.168.40.252:8000", job="lask-app", pod="dep-2023m(03013 54456177bb-2xcwC", pod_template_hash="5445677bb", version="10"}
total {app="app- ", exported_pod="dep 5445617 7bb-54SnT", instance="192. 168.81.36:8000", job="Task-app", pod="dep-2023m03013-5445617 7bb-54shr", pod_template_hash="54456(77b0", version="10"}

CTRL + click: toggle multiple series

This query was entered in the Expression field at:
http: //18.130.201.109:30900 /graph
On execution, two distinct time series were returned:

instance="192.168.81.36:8000" — pod
dep-2024mt03533-54456f77bb-54shft
instance="192.168.40.252:8000" — pod
dep-2024mt03533-54456F77bb-2xcwc

http://18.130.201.109:30900/graph

Each line corresponded to a different replica of the Flask deployment. The metric
values — 23127 and 23123 — indicated the cumulative number of requests served by
each pod, confirming that:
1. Prometheus was correctly scraping metrics from both /metrics endpoints.
2. The Kubernetes LoadBalancer was evenly distributing traffic across the two
replicas.
This result also validated that annotation-based discovery and RBAC configuration
(defined in prometheus-rbac.yaml) were functioning as expected, enabling
Prometheus to list pods and collect data cluster-wide.

CPU and Memory Metric Validation

To extend the verification to resource-level metrics, additional PromQL
expressions were executed:

process_cpu_seconds_total

This query plotted the cumulative CPU time consumed by each Flask process,
showing steadily increasing lines for both pods, which confirmed active CPU usage
tracking.

9 Prometheus Ale:

Use local time Enable query history Enable autocomplete Enable highlighting) Enable linter

Q process_cpu_seconds_total = 8

Table Graph

E-Ea -

20200

200.00

196.00

19400

15000

2023m103013",Instance="192.168.40.252:8000", job="Tlask app’", Pod="dep-2023m03013-54456177bb-2cwc", pod_template_hash="54456177bb}
istance="192.168.81.36:8000", job="Tlask-app’, pod="dep-2023mi03013-54456(77bb-54shT", pod_template_hash="54456(77bb’}

And then the query was executed:

process_resident_memory bytes

9 Prometheus Alerts Gra

Use local time Enable query history Enable autocomplete Enable highlighting Enable linter

rocess_resident memory bytes = Execute
P - ! y_by

Table Graph

a-EE - - -

06:30 0635 06:40 0645 06:50 0655 o700 0705 0710 o715 0720

023mi03012", instance="192.168.40.252:8000",job="lask-app", pod="dep-2023mI03012-54456(77bb-2xcwc, pod_template_hash="54456177bb"}
023m03013", instance="192.168 81 .36:8000°", job="lask-app", pod="dep-2023mt03013 5445617 7bb-54shf", pod_template_hash="54456(77bt}

This query reflected the memory footprint of each pod, which remained stable at
approximately 38 MB, demonstrating consistent resource usage under load.

Addition Queries

Total Requests per Second (Rate of Requests)
This query calculated how frequently the /get_info endpoint was being called,
giving an indication of live request throughput per replica:

rate(get_info_requests_total[1lm])

This metric plotted the instantaneous rate of incoming requests averaged over one
minute.

It confirmed that traffic was evenly distributed by the LoadBalancer and provided a
useful performance indicator for the Flask application.

g Prometheus ©

Use local time Enable query history Enable autocomplete Enable highlighting Enable linter

Q ratefget_info_requests_total[ln])

Table Graph

-

i

06:35 06:40 06:45 0650 0655, o7 o7 o7 o7:1

= (app="app 3", exported_pod="dep 13-5445617 70-2X0we”, instance="192. 168.40.252:8000°, job="lask-app", pod="ciep-2023mt03013-5445677bb-2xcwc”, pod_template_hash="54456(77bb", version="1.0}
u (app="app 3" exported_pod="dep 113-54456177bb-545T", nstance="192.168.81.36:8000", job="Tlask-app", pod="dep-2023mi03013-54456177bb-54shT", pod_template_hash="54456(T7bb", version="1.0"}

Click: select series, CTRL + click: toggle multiple series

System Load and Resource Correlation

This query correlated CPU utilisation with memory usage across replicas:

process_cpu_seconds_total / process_resident_memory_bytes

g Prometheus ©

Use local time @ Enable query history @ Enable autocomplete @ Enable highlighting @ Enable linter

Q process_cpu_seconds_total / process resident memory bytes NN Execute

Load time: 34ms Resolution: 145~ Result series: 2

Table Graph

- I soane X
5.30u

5250

5200

5150

5.10m

5000

06:35 06:40 06:45 0650 0655 o700 o705 o710 o715 o7:20 0725 0730

) {app="app-2023mt03013", instance="192.168.40.252:8000", job="Tlask-app", Pod="dep-2023mi03013-54456(77bb-2xcwc", pod_template_hash="54456(77b0"}
 {app="app-2023mt03013" instance="192.168.81.36:8000", job="ask-app", pod="cep-2023mt03013 5445617 7bb-54SNT" pod_template_hash="54456(770b"}

Click: select series, CTRL + cick: toggle multiple series

	DevOps for Cloud – Assignment 1
	Vivek Bhadra
	(Roll: 2024mt03533)
	End-to-end implementation on AWS with ECR, EKS, Load Balancer, and Prometheus
	
	
	
	
	Overview
	Task 1: Create the Backend Application using Flask
	Project Structure
	Core Flask Application
	main.py

	Code Walkthrough – main.py
	Dependency Management
	Deploy your flask application locally
	Environment Setup
	Run the Application with Uvicorn
	Verify in Browser
	Observations and Verification

	Task 2: Containerisation of the Backend Application
	Objective
	Implementation
	Containerisation (Docker)
	Dockerfile Design and Explanation
	Working Directory Configuration
	Complete Dockerfile
	Build Process and Verification

	Observations and Design Considerations
	Outcome

	
	Task 3: Run the Docker Container
	Objective
	Prerequisites
	Container Run
	Verifying the Container Creation
	Verifying Local Accessibility
	Observations
	Container Shutdown and Clean-up
	Challenges and Notes
	Container Shutdown and Clean-up
	Outcome
	Kubernetes Configuration
	ConfigMap (application configuration)

	Deployment – Two Replicas with Probes and Metrics Annotations

	Task 4: Deploy the Docker Image to a Kubernetes Cluster
	Objective
	Prerequisites and Environment Setup
	Configuration via ConfigMap
	Deployment Creation
	
	Deployment Execution
	Verification and Observations
	Outcome
	Service (LoadBalancer)
	
	Prometheus Configuration (for later verification)
	
	Versioning and Tags

	Verifying the Application Works Locally
	Building the Docker Image
	Screenshot
	
	Log

	Running the Docker Image Locally
	Screenshot
	Logs

	Testing the /get_info Endpoint
	Testing the /metrics Endpoint
	Log On Client
	Screenshot

	Kubernetes Deployment and Verification of Load Balancing and Metrics Collection
	Verifying Load Balancing
	Health Probes and Pod Resilience

	Task 5: Configure Networking with a Load Balancer in the Kubernetes Cluster
	Objective
	
	Service (LoadBalancer)
	
	Kubernetes Deployment and Verification of Load Balancing and Metrics Collection
	
	Verification of Load Balancer Service
	
	Verifying Load Balancing
	Health Probes and Pod Resilience
	Outcome
	Prometheus Metrics Verification

	
	Task 6: Configure Prometheus for Metrics Collection
	Objective
	Create the Monitoring Namespace
	Apply the Prometheus Configuration
	Deploy Prometheus
	Expose Prometheus Service Externally
	Verify Prometheus in the Browser
	
	Challenges and Debugging
	Security Group Access
	Fixing Pod Discovery Failure (RBAC Permissions)

	Verification of Targets
	Prometheus Metrics Verification
	Local Verification of Prometheus Setup
	External Verification via NodePort Service
	PromQL Query and Metric Validation
	CPU and Memory Metric Validation
	Addition Queries
	Total Requests per Second (Rate of Requests)
	System Load and Resource Correlation

