DevOps

Docker Container (Lesson 6 & 7)



Monolithic vs Microservices

Monolithic Architecture

Entire application built as one single unit.

Components like Ul, Business Logic, Data Access Layer are tightly coupled.

Single deployment package (e.g., WAR/JAR file).

Scaling requires scaling the whole application, even if only one part needs more resources.
High risk: failure in one module can crash the entire system.

Microservices Architecture

Application broken into independent, loosely coupled services.

Each service handles a specific functionality (e.g., payments, catalog, authentication).
Services communicate typically via APIs (REST/gRPC).
Allows scaling of individual services based on demand.
Failure in one service does not necessarily impact others.




Key Differences (Monolith vs Microservices)

Scaling

e Monolithic: Must scale the whole app.
e Microservices: Can scale individual services
as needed.

Deployment

e Monolithic: Single, large unit — risky, slow,
redeployment of whole app for changes.

e Microservices: Independent services — fast,
safe, rolling deployments possible.

Technology Stack

e Monolithic: Homogeneous (one
language/stack).
e Microservices: Heterogeneous (different

languages/frameworks for different services).

Team Structure

e Monolithic: Large, cross-functional teams
maintaining one codebase.

e Microservices: Small, autonomous teams
owning individual services.

Fault Isolation

e Monolithic: Single point of failure can crash
entire app.

e Microservices: Failure is isolated to one
service, system remains mostly functional.



Real-World Example 1 (Scalability Challenge)

e Inthe beginning, your application runs on a single server, and this setup is enough to serve
around one hundred users without any problems. As the website becomes popular, the user
base grows to one million, with nearly ten thousand users active at the same time.

e Eventhough the server has powerful hardware — for example, sixty-four gigabytes of RAM
and ten terabytes of disk space — it can only handle around eight hundred to one thousand
users smoothly. Beyond that point, the server becomes overloaded.

e At this stage, there are two ways to scale. One option is vertical scaling, where you add more
RAM or CPU to the same machine. However, this quickly becomes expensive and has
physical limits. The other option is horizontal scaling, where you add more servers. But with a
monolithic application, every new server must run a full copy of the entire application, even if
only one part, such as the payment service, is causing the overload.

e The key problem is that a monolith forces you to scale the whole appli

the part that needs extra capacity. This wastes resources and mak




Challenge #2: Frequent Updates Without Full
Redeployment

In a monolithic system, even a very small change, such as updating the payment service, requires
redeploying the entire application. This process increases downtime, slows down development,
and carries the risk of breaking unrelated parts of the application.

In contrast, a microservices-based system allows each component, such as the payment service or
the authentication service, to be updated independently. Using modern CI/CD pipelines, these
updates can be deployed quickly and safely without disturbing the rest of the application. This
makes deployment cycles faster, reduces risk, and enables continuous delivery.




Monolith vs Microservice for Payments

1. Scalability

In a monolithic application, if the payment service is under heavy load, you must scale the entire application. This
means even unrelated parts, such as product search or user profiles, get extra resources they don’t need, which
wastes money and computing power.

With microservices, the payment service can be scaled independently. For example, during a holiday sale, only the
payment service might need to handle ten times more traffic while other services remain steady. However, this
comes with a challenge: setting up advanced load balancing and auto-scaling rules is more complex thanin a
simple monolithic setup.

2. Resilience and Fault Isolation

In monoliths, a payment failure could bring down the entire application because everything runs in one process.
Imagine the payment gateway going offline — now even browsing products may stop working.

With microservices, failures are isolated. If the payment service fails, users can still brows
to the cart, and payment can be retried later. Developers can also add safety mechanis
which stop one failure from triggering a chain reaction. On the flip side, retry handlin
distributed systems must be carefully designed.




3. Latency and Network Overhead

Monoliths run inside a single process, so internal communication is usually faster. In microservices, each service
communicates over the network, which can introduce some delay. For example, the payment service may need to
talk to external gateways like Stripe or PayPal, and that adds latency.

To reduce this overhead, developers often use efficient protocols like gRPC or asynchronous message queues
such as Kafka and RabbitMQ. Still, the unavoidable reality is that more network calls increase the risk of
slowdowns compared to the all-in-one nature of monoliths.

4. Technology Flexibility

Monoliths typically lock you into one tech stack — one language, one database. This makes things consistent but
limits choices. For example, if the entire e-commerce system is written in Java with a MySQL database, you must
use the same for payments, even if another tool might be better.

Microservices give you the freedom to choose the best technology for each job. For payments, you might use
PostgreSQL for financial transactions and Redis for caching recent payments. You might ev
service in Go for speed while keeping the catalog service in Python. The trade-off is that
increases complexity, because your team must maintain many different technologies




5. Development and Deployment Speed

In a monolith, even a small change in the payment logic requires rebuilding and redeploying the entire application.
This slows down delivery and creates risk — a change in payments could accidentally break product search.

In microservices, the payment service can be updated independently. For example, if you want to add a new
payment provider like Apple Pay, you can deploy only the payment service using CI/CD pipelines, without touching
the rest of the system. This makes releases faster and safer. The downside is that managing many independent
deployments increases DevOps workload, since orchestration and coordination become critical.




Virtualisation

Read from previous Slides




Cloud-Native Apps — Characteristics

Cloud-native applications are built with microservices architecture rather than monolithic design. This means
different parts of the application can be developed, scaled, and deployed independently. To make this work,
cloud-native apps usually run inside containers such as Docker or Podman, which ensure the application behaves
the same on any environment, whether on a developer’s laptop or a production cloud server.

Managing many containers requires orchestration platforms like Kubernetes, AWS ECS, or Google Cloud Run.
These tools handle container scheduling, scaling, and failover automatically. In addition, serverless computing
(e.g., AWS Lambda or Google Cloud Functions) allows developers to focus purely on writing code while the cloud
provider handles servers behind the scenes.

Cloud-native apps also rely heavily on auto scaling and automation. For example, an online ticket-booking service
can automatically spin up extra instances during a concert ticket release and scale back down when demand
drops. Finally, CI/CD pipelines enable teams to release new features rapidly without waitin




Cloud-Native Apps — Obstacles

While powerful, cloud-native development comes with challenges. Complexity is a major issue: splitting an
application into dozens of microservices requires careful design and ongoing management. For example, keeping
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track of dependencies between services like “orders,” “payments,” and “notifications” can get overwhelming.

There is also a cultural shift. Traditional organisations used to slow, centralised IT processes need to embrace
DevOps culture, where teams take more responsibility for deployment and operations. Legacy systems are
another obstacle. For instance, a bank running decades-old mainframes may find it extremely difficult to migrate
smoothly into a microservices-based, containerised setup. Finally, security is more complicated in a distributed
environment. Instead of protecting one big application, you now have to secure dozens of services
communicating over networks.




Cloud-Native Apps — Enablers

Several enablers make cloud-native adoption possible. Automation tools, such as CI/CD pipelines and
Infrastructure as Code (Terraform, Ansible), allow teams to manage infrastructure and releases at scale.
Container orchestration through platforms like Kubernetes ensures that hundreds of containers can be scheduled,
scaled, and updated automatically without manual intervention.

A strong DevOps culture is also critical, encouraging collaboration between developers and operations staff. For
example, developers don't just hand over code to operations — they take part in monitoring and improving it in
production. Finally, cloud services such as managed databases, serverless platforms, and monitoring tools reduce
the operational burden so that teams can focus more on business features than on infrastructure.




CNCF Landscape

The Cloud Native Computing Foundation (CNCF) plays a central role in shaping the ecosystem. It hosts
open-source projects that have become industry standards. For instance, Kubernetes is the leading platform for
orchestrating containers. Prometheus provides real-time monitoring and alerting, which is essential for detecting
failures early. Envoy is a service proxy used to manage secure communication between microservices. Finally,
Fluentd helps collect and unify logs across many services, making it easier to troubleshoot issues in distributed

systems.




Cloud DevOps

Cloud DevOps combines cloud infrastructure with DevOps practices to streamline how software is built and
maintained. CI/CD pipelines automate the integration and deployment of code so that teams can deliver new
features or bug fixes multiple times per day. Infrastructure as Code (laC) tools like Terraform or Ansible allow
infrastructure to be described in files and versioned like code, which reduces human error and makes
environments reproducible. Monitoring and logging tools such as Prometheus or the ELK stack (Elasticsearch,
Logstash, Kibana) give teams real-time visibility, so they can quickly detect and fix performance issues.




Microservices in Cloud-Native Ecosystem

Microservices are the backbone of cloud-native apps. Each service is independent — meaning it can be built,
tested, and scaled separately. For example, an e-commerce platform may have separate services for user
authentication, product catalog, and payments.

These services communicate using lightweight protocols like HTTP/REST or through messaging queues like
Kafka. This allows them to remain loosely coupled while still working together. Microservices also bring flexibility,
making it easier to update or replace one component without affecting the entire application. For example, a
payment service can switch from PayPal to Stripe without changing the product catalog or the shopping cart.




Containers in Cloud-Native Ecosystem

Containers are lightweight, portable units that package an application with all its dependencies. This ensures
that the application runs the same on a developer’s laptop, in a staging environment, and in production.
Containers provide isolation, so even if multiple services run on the same host, they don'’t interfere with each
other.

They are also efficient, consuming fewer resources compared to full virtual machines. For instance, you can run
hundreds of small containers on a single server, whereas the same server might only run a few VMs. Finally,
containers are highly portable, meaning a service built and tested on Docker locally can run seamlessly on AWS,
Google Cloud, or even an on-premise data centre.




Why Do We Need Containers?

Traditionally, applications were run on virtual machines (VMs). A VM includes not only the application and its
libraries but also a full copy of the operating system. This makes VMs heavyweight. For example, an Ubuntu VM
image can be around 4 GB, and booting it up takes a lot of time before you can even start the application. Imagine
needing to spin up multiple such VMs quickly — it’s like waiting for several laptops to start up just to run a single

app.

This inefficiency raises the question: can we do better? That’'s where containers come in. Containers are
lightweight and don’t need a full OS inside each unit. They share the host operating system, which makes them
faster to start and smaller in size.




Hypervisors vs Containers

There are two main types of hypervisors for VMs:

1.  Type 1 Hypervisors (Bare Metal)
These run directly on the hardware. The hypervisor itself manages the hardware and creates VMs. Each
VM still needs its own operating system. For example, a cloud provider like VMware ESXi or Microsoft
Hyper-V uses this model.

2. Type 2 Hypervisors (Hosted)
These run on top of an existing operating system. The hypervisor is essentially another software layer. VMs
still carry their own OS. This setup is common in developer laptops using VirtualBox or VMware
Workstation.

In both cases, every VM carries an entire OS image, making it bulky and slow.




Where Containers Differ

Containers solve these problems by running on a container runtime (like Docker or containerd) on top of the
host OS. Instead of carrying a full OS, each container only packages the application and its dependencies. This
makes containers:

e Lightweight: Instead of gigabytes, container images can be a few hundred MBs or less.
e Fast to Start: Containers can start in seconds, compared to minutes for VMs.
e Efficient: Multiple containers can run on the same OS, sharing its kernel.

For example, if you run two applications — one for managing orders and another for processing payments —
using virtual machines would mean allocating separate operating systems for both, wasting storage and memory.
With containers, both applications can run on the same host operating system, each in its own isolated
environment, consuming fewer resources and starting quickly.




Example

Suppose you’re running an e-commerce platform with two main apps: a catalog service and a payment service.

e Inthe VM world, each app would run inside its own VM, each carrying a full operating system. Starting them
up could take minutes, and you’'d waste resources maintaining duplicate OSes.

e In the container world, you just package each service with its required libraries and run both on the same
OS using Docker. They’ll start within seconds, consume fewer resources, and scale up or down much faster

during high traffic (like Black Friday sales).




Base Images in Docker: User-Space Without the Kernel

When you run Docker, the container does not need a full operating system kernel like a virtual machine. Instead, it
shares the host’s kernel. That’s why containers are lightweight compared to VMs.

However, many Docker images (like ubuntu, debian, or alpine) are called base images. These contain just
enough of the user-space tools and libraries from that distribution to run applications. They don’t include the
Linux kernel, because the kernel is already provided by the host operating system.

So, when you see Docker pulling an ubuntu image:

e It's not downloading a full 4 GB Ubuntu VM with its kernel.
e It's downloading a stripped-down user-space environment (libraries, shell, package manager, etc.).
e The size is usually a few hundred MB (sometimes less if it's minimized).

This way, developers can build apps in a familiar environment (say Ubuntu), while still be
efficiency.




The Problem with Developer Onboarding

When a new developer joins a team working on a data analytics product, they need to set up the entire technology
stack before they can contribute. This usually means installing multiple tools and dependencies, which vary
depending on the operating system. For instance, if the team uses Oracle Data Integrator as an ETL tool, the
developer first needs to install the Java Development Kit (JDK) and also configure Redis for caching.

The installation steps differ between Windows and Linux, and the process often involves many tools and manual
configuration. This not only takes time but is also error-prone, especially for someone new to the team. As a result,
valuable onboarding time is lost, and the developer may face frustrating setup issues before even starting real
work.




How Docker Simplifies Onboarding

With Docker, the entire setup can be packaged into a single custom image that contains all the required tools,
libraries, and configurations. Instead of spending hours or days installing everything manually, the new developer
only needs to install Docker, pull the pre-built image, and run it.

This drastically reduces onboarding time and ensures consistency across environments. Whether it's a
development machine, a QA test environment, or production, the same Docker image guarantees that the
application runs in a predictable way. This eliminates the “works on my machine” problem and accelerates
productivity for the whole team.




Docker Architecture

Docker works on a simple but powerful architecture. On your machine, you have the Docker client, which is what
you interact with when you type commands like docker build, docker pull, or docker run. These commands
are sent to the Docker daemon (the background service), which does the heavy lifting — building images,
running containers, and managing resources.

The daemon stores images, which are blueprints containing your application code plus its dependencies. From
these images, Docker launches containers, which are lightweight, isolated environments where your applications

actually run.

When you need an image (say Ubuntu, Redis, or Nginx), Docker can pull it from a registry (like Docker Hub).
This is like an app store for containers. Once pulled, you can reuse that image across many containers.




Advantages of Using Docker

The true power of Docker is in the benefits it gives developers and teams:

Accelerated Developer Onboarding: Instead of spending hours installing tools and dependencies, a new
developer can just run docker run ..and instantly get a ready-made environment. This saves days of
setup frustration.

Eliminate App Conflicts: Different apps might need different versions of Java, Python, or databases. On a
normal machine, this causes conflicts. Docker isolates each app in its own container, so multiple versions
can run side by side without clashing.

Environment Consistency: One of the biggest developer pains is “it works on my machine but not in
production.” With Docker, the same container image runs the same way in development, testing, and
production — removing these inconsistencies.

Ship Software Faster: Since everything is packaged into containers, deployment is as_gsi
the image. This speeds up delivery cycles and makes continuous integration/contin
(CI/CD) pipelines smoother.




Docker vs VMs wrt Compatibility

VMs can run any OS image on any host (Windows host running Ubuntu VM).
Docker requires kernel support (Linux containers need Linux kernel).
Old Windows versions (7/8) cannot run Linux containers.

Newer Windows versions (10/11 with WSL2) support Linux containers natively.




Docker Basics

When working with Docker, you’ll often hear about images and containers. These two concepts are closely
related, but they serve different purposes.

Docker Image — The Blueprint

Think of a Docker image as a blueprint or a recipe.

e Just like a house blueprint specifies the structure, materials, and layout before construction, a Docker image
defines everything needed to run an application.

e This includes:

o The operating system environment (like Ubuntu, Alpine Linux, etc.)

o The libraries and dependencies (for example, Python runtime, database drivers, or system utilities)
o The application code itself

The key thing is: an image is static—it does not change when it’s just sitting there. It's



Docker Container — The Live Instance

Now imagine you take that blueprint and actually put into action.

A container is a running instance of an image.

When you “start” a container, Docker takes the image, sets up the environment it defines, and launches
your application inside it.

e Unlike the static image, the container is dynamic: you can interact with it, run commands inside it, and even
modify it while it's running.




Getting Started with Docker

docker -v

# If not found — install:

sudo snap install docker # or:sudo aptinstall docker.io

docker -v

# Docker version 28.1.1+1

docker images

# empty at first

docker pull ubuntu

# permission denied — use sudo:

sudo docker pull ubuntu

docker images

# now shows ubuntu:latest

sudo docker run --name ubuntul ubuntu

docker ps

# permission denied — use sudo:

sudo docker ps

sudo docker ps -a

# shows all containers (running + stopped)

Comment: Containers stop when no foreground process runs. Unlike VMs, containe
a process.




docker pull ubuntu # download latest Ubuntu
docker pull ubuntu:jammy # download a specific tagged version
docker pull mysql # download MySQL server image

Passing Environment Variable

We can also pass environment variables when starting a container, which is especially useful for services like
databases:

docker run --name mysql2 -d -e MYSQL_ROOT_PASSWORD=mysql123 mysql

Port Binding

Here, the root password is provided as an environment variable.

To make containers accessible from outside, we use port binding. For example:

docker run --name mysql5 -d -e MYSQL_ROOT_PASSWORD=mysql123 -p 3307:3306 mysql

This maps host port 3307 to container port 3306, allowing us to connect to MySQL from
Multiple containers can be run with different host ports (e.g., 3307, 3308, 3310).




Cleaning Up
When we are done, Docker allows us to stop and remove containers and images to free up resources:

docker stop mysql5 # stop the container
docker rm mysql5 # remove the container
docker rmi mysql # remove the image




Keeping Container Alive

When you start a Docker container with just an image like ubuntu, it exits immediately because there’s no
process to keep it running. A container only stays alive as long as there’s a foreground process inside it.

To keep it alive temporarily, you can run a dummy command like sleep:
docker run --name ubuntu2 ubuntu sleep 100

This keeps the container running for 100 seconds before stopping.
If you want to use the container interactively, start it with -it:

docker run -it ubuntu

This opens a shell inside the container where you can type commands.




Running Real Services

The main goal of containers is to host applications (not just run dummy commands).
A container keeps running as long as the service inside it is running.

For example:

docker run -d nginx

This starts an NGINX web server in the background, and the container stays alive because the server process is
active.

no active process = container stops. Real services keep the process (and container) alive.




Running NGINX in a Container

sudo docker run -d nginx e Docker could not find the nginx:latest
image locally.

Unable to find image 'nginx:latest’ locally e It automatically pulled the image from Docker

latest: Pulling from library/nginx Hub (official .

d187e437f729: Pull complete ub (official registry).

cb497a329a81: Pull complete e Several layers were downloaded and

f1c4d397f477: Pull complete : :

£72106e86507+ Pull complete combined to form the NG.INX.lmage.

899c83fc198b: Pull complete e Docker started the container in detached

a785b80f5a67: Pull complete mode (-d), meaning it runs in the

6c50e4e0c439: Pull complete

Digest : background.

sha256:d5f28ef21aabddd@98f3dbc21fe5b7a7d7a18 e You now have an NGINX web server running

4728bcB7daBb6c9Ib9820e9725¢ inside a container.

Status: Downloaded newer image for ] _ .

nginx:latest e The container stays alive because the nginx

0949151f1cb5f2330fde10faeb09363f26f8fe9286ff server process keeps running.

28e50934c8a2fddbdfd9



How Docker Images Work: Layers

A Docker image is not one big file.
Instead, it is made up of multiple layers, stacked on top of each other.

What happened with docker run -d nginx:

e Docker saw you don’t have the nginx:latest image locally.
e |t pulled several read-only layers (each line you saw: “Pull complete”).
e Each layer represents part of the filesystem (e.g., Ubuntu base, libraries, NGINX binaries, config files).
e Docker then combines these layers into one final image.
Why layers?

e Layers make Docker efficient:
o Iftwo images share a base (like Ubuntu), that layer is downloaded once an
o Updates only download new or changed layers, not the whole image agai




Docker Containers — Example

App

The server is the physical hardware used to host
applications.

Docker Engine

Host OS

The Host Operating System (Linux/Windows) runs
directly on this server.

Server

The Docker Engine is installed on the Host OS to
provide containerisation.

Applications run as Docker containers, each S ’

packaging its required environment (e.g., Python i Python 3.6 ' nginx } Container
with Ubuntu, or NGINX with CentOS). Ubuntu 16.04 CentOS 7.3

Containers share the Host OS kernel but remain Pocker E"g'"e

isolated from one another, ensuring efficiency and Host OS ’
consistency compared to full virtual machines. A Infrastructure ’
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Running a Container in Background (Detached Mode)

By default, if you run a container with a foreground process (e.g., sleep 1080), your terminal is blocked until it
finishes.

To avoid blocking, you can run the container in detached mode using the -d option.
Example:

docker run --name ubuntu3 -d ubuntu sleep 1600

Here:

e --name ubuntu3 — names the container.
-d — runs it in background (detached).
e sleep 100 — makes it stay alive for 100 seconds.

Docker immediately returns control to the terminal and gives you the container ID.
Use docker ps to check running containers in the same prompt.




NGINX

Open-source web server (pronounced engine-x).

Acts as web server, reverse proxy, load balancer, caching server.

Designed for high concurrency and efficient handling of thousands of connections.

Serves static content (HTML, CSS, images) and forwards dynamic requests to app servers.
Widely used in production by large-scale platforms due to speed and scalability.

NGINX (engine-x) is a fast, lightweight web server that powers many modern websites. It can serve static files like
HTML and images directly, or act as a reverse proxy that sits in front of application servers, balancing traffic and
improving performance. Because it can handle thousands of users at once with low resource usage, NGINX has
become the backbone of many high-traffic platforms, making it one of the most trusted tools for running web
applications at scale.




Why Use NGINX if We Already Have ALB + Auto Scaling?

Different layers of traffic handling

e ALB + Auto Scaling work at the cloud infrastructure level.
NGINX works at the application server level.

ALB + Auto Scaling

e Spread requests across multiple servers.
e Add/remove servers automatically based on load.

NGINX inside each server/container

Acts as a reverse proxy, routing requests to the right service.

Serves static files (HTML, images, CSS, JS) faster than app code.

Provides caching, so frequent requests don’t always hit the backend.
Handles TLS termination and adds an extra layer of security.

Uses an event-driven model, making it very efficient with thousands of conc




Why Use NGINX if We Already Have ALB + Auto Scaling?

In a typical AWS setup:

ALB (Application Load Balancer) sits at the front, distributing traffic across multiple EC2 instances (or
containers).
Each EC2 instance (or container running on ECS/EKS) has NGINX installed.
Inside the instance, NGINX acts as the entry point:
o  Serves static files directly.

Forwards dynamic requests to your backend app (e.g., Node.js, Python, Java service).
o Handles SSL/TLS, caching, compression, etc.

@)




EC2 vs Containers in AWS Architecture

In a traditional VM-based setup, you launch @
multiple EC2 instances. On each instance, you Lo Batancer
install NGINX and your application, and the ALB

(Application Load Balancer) distributes traffic across

these instances.
NGINX NGINX NGINX
In a containerised setup, instead of installing joston | | Appiication | | Appication

applications directly on EC2, you package them as

Docker containers. These containers still need a

host — either an EC2 instance (self-managed) or a @
managed service like ECS (Elastic Container i
Service) or EKS (Elastic Kubernetes Service). The

ALB then routes traffic directly to the containers

running on those hosts.
Docker Docker Docker




Running Commands Inside a Container (docker exec)

The docker exec command allows you to run commands inside an already running container. To
start an interactive bash session:

docker exec -it nginx2 /bin/bash

To check the operating system details within the container:

docker exec nginx2 cat /etc/os-release




Running Commands in a New Container (docker run)

The docker run command can execute a command while starting a new container. With the -it
option, an interactive terminal is provided. For example:

docker run -it nginx echo "hello"

This starts a new nginx container and prints “hello” as output.




Inspecting a Container (docker inspect)

The docker inspect command returns detailed metadata about a container in JSON format,
including container ID, image, status, network settings, and creation time. For example:

docker inspect nginx2




Viewing Container Logs (docker 1logs)

The docker logs command shows the logs generated by a container. These logs may include
configuration steps, startup processes, and runtime messages.

For example:

docker logs nginx2




