
Container Orchestration
Session 5 - 6 including Kubernetes Services (Pod, Node, Cluster)

1

Container

A container is a lightweight, portable, and self-sufficient software unit that includes everything
needed to run an application: code, runtime, system tools, libraries, and dependencies.

● It ensures consistency across environments, meaning an application runs the same
regardless of where it is deployed—whether on a developer’s laptop, a testing server, or a
cloud-based production system.

● Containers are isolated from each other, preventing conflicts between applications running on
the same system.

● They are highly scalable, meaning they can be deployed in large numbers and can scale up
or down based on demand.

● Unlike traditional virtual machines (VMs), containers share the same host OS kernel, making
them lightweight and faster to start.

2

What is Container Orchestration?

Container orchestration is the automated management of containerized applications across
multiple environments.

It ensures that containers are deployed, managed, scaled, networked, and maintained efficiently
without manual intervention.

Think of it as an advanced traffic control system for containers—it decides:

● Where to deploy containers.
● How they communicate.
● When to scale them up or down.
● What to do if a container crashes.
● How to update them without downtime.

3

Key Functions of Container Orchestration

● Automated Deployment: Ensures containers are launched and assigned to available
computing resources.

● Scaling: Increases or decreases the number of running containers based on demand.
● Load Balancing: Distributes traffic efficiently across containers to avoid overload.
● Fault Recovery: Detects and restarts failed containers automatically.
● Networking & Service Discovery: Ensures seamless communication between containers

and external systems.

Example of a Container Orchestration Tool:

One of the most widely used tool for container orchestration is Kubernetes.

4

Orchestration Tool: Kubernetes
Originally developed by Google, it is now
maintained by the Cloud Native Computing
Foundation (CNCF).

● Kubernetes groups containers into Pods,
which are the smallest deployable units.

● It uses a Master-Worker architecture,
where the Master node manages
containerized applications across multiple
worker nodes.

● Key components include:
○ API Server: Acts as the front-end for

Kubernetes.
○ Controller Manager: Ensures the

cluster's desired state.
○ Scheduler: Assigns workloads to

nodes based on available resources.
○ Kubelet: Runs on each node to

ensure containers are running.
5

Orchestration Tool: Kubernetes

Source: https://sensu.io/blog/how-kubernetes-works

6

Orchestration Tools

7

Why Do We Need Container Orchestration?
When dealing with a single container, management is straightforward. However, in modern
applications, multiple containers are required to work together efficiently. This introduces
complexity, which is why container orchestration becomes essential which provides the following:

● Scalability: A real-world application consists of multiple microservices, each running in its
own container. As demand grows, orchestration helps scale up or down automatically.

● Inter-Container Communication: Different containers (e.g., an application server and a
database) must interact seamlessly. Orchestration ensures smooth communication.

● Resilience & Fault Tolerance: If a container fails, orchestration ensures another instance is
launched automatically.

● Load Balancing: Efficient distribution of traffic among multiple container instances ensures
optimized performance.

● Automated Deployment & Updates: Orchestration tools manage rolling updates and
rollbacks, preventing downtime during updates.

8

Why Do We Need Container Orchestration?

Source: https://www.exoscale.com/ 9

Kubernetes

Kubernetes (often abbreviated as K8s) is an open-source container orchestration platform
designed to automate the deployment, scaling, and management of containerized applications. It
enables organizations to efficiently run applications across multiple machines, whether in the
cloud, on-premise, or hybrid environments.

Kubernetes was originally developed by Google, leveraging their 15 years of experience
managing production workloads, and is now maintained by the Cloud Native Computing
Foundation (CNCF).

10

Key Features of Kubernetes
Automated Deployment & Scaling

● Kubernetes dynamically deploys applications by pushing configuration files to running
containers.

● It supports rolling updates (updating applications without downtime) and rollbacks
(reverting changes if something goes wrong).

● Ensures that the desired number of application instances (containers) are always running.

Service Discovery & Load Balancing

● Applications often consist of multiple interdependent services (e.g., web servers, databases).
● Kubernetes provides an internal DNS system to automatically discover services and allow

seamless communication between them.
● It distributes incoming traffic efficiently across multiple containers to prevent overload on

any single instance.
11

Source: https://www.sokube.io/blog/introduction-to-kubernetes-operators-1 12

Feature: High Availability in Kubernetes (HA)

High Availability (HA) refers to an application's ability to remain operational and accessible despite
failures in the underlying infrastructure. Kubernetes ensures high availability through intelligent
automation mechanisms.

How Does Kubernetes Ensure High Availability?

● Distributed Architecture:
○ Kubernetes distributes workloads across multiple worker nodes. If one node fails,

another node automatically takes over the workload.
○ The Master Node continuously monitors the state of the cluster and ensures all

applications are running as expected.

13

Kubernetes Distributed Architecture

Source: https://www.clickittech.com/devops/kubernetes-architecture-diagram/ 14

Feature: Auto-Scaling
● Kubernetes dynamically adjusts the

number of running containers based on
demand.

1. Horizontal Pod Autoscaler (HPA):

● Increases or decreases the number of
Pods.

● It monitors metrics like CPU/memory
utilization of existing Pods.

● If utilization exceeds a threshold, more
Pods are created.

● If utilization drops, Pods are terminated.
● Scales at the Pod level, not individual

containers inside the Pod.

Source: https://www.nops.io/blog/comprehensive-guide-kubernetes-autoscaling/ 15

2. Cluster Autoscaler:

● Increases or decreases the
number of worker nodes.

● If new Pods cannot be scheduled
due to resource limits, new nodes
are added.

● When nodes are underutilized, they
may be removed.

● Scales at the node level, not
directly at the Pod/container level.

Source: https://www.nops.io/blog/comprehensive-guide-kubernetes-autoscaling/ 16

○ If a container crashes,
Kubernetes automatically
restarts it.

○ If a node fails, the
system reschedules
workloads onto healthy
nodes.

○ If an update goes wrong,
Kubernetes rolls back to
the previous stable state.

Feature: Self-Healing & Failover Mechanism

17

Feature: Stateful
Application
Management

● Kubernetes ensures stateful
applications (like databases)
remain highly available by
using Persistent Volumes
(PVs) and StatefulSets.

● In case of node failures,
Kubernetes maintains data
integrity and ensures
applications continue running
smoothly.

Source: https://www.buchatech.com/2022/08/running-stateful-apps-in-kubernetes/
18

Feature: Automatic Bin Packing (Intelligent Resource Allocation)
Kubernetes efficiently places containers on available worker nodes to maximize resource
utilization while maintaining application performance.

● Instead of running containers randomly, Kubernetes schedules them based on:
○ CPU and Memory Requests & Limits: Ensures that each container gets the necessary

resources while preventing overconsumption.
○ Node Capacity & Constraints: It fits containers onto nodes based on available CPU,

memory, and custom constraints like affinity rules.
○ Pod Priorities: Ensures critical workloads get placed before less important ones.

19

Automatic Bin Packing

20

Feature Self-Healing (Built-in Fault Recovery)
Kubernetes ensures high availability by automatically detecting and recovering from failures
without manual intervention.

● Container Restarts: If a container crashes, Kubernetes automatically restarts it.
● Node Failover: If a node becomes unresponsive, Kubernetes shifts workloads to healthy

nodes.
● Health Checks:

○ Liveness Probes: Checks if a container is still running; if not, Kubernetes restarts it.
○ Readiness Probes: Ensures a container is ready to accept traffic before adding it to a

service.
● Pod Replacement: If a container within a Pod fails repeatedly, Kubernetes automatically

terminates the Pod and creates a new one to maintain application availability.

21

Source: https://www.groundcover.com/blog/kubernetes-benefits
22

Service Discovery: How
Containers Find Each Other
Unlike traditional monolithic applications,
containerized microservices need a dynamic
way to communicate with each other
because:

● Containers are ephemeral (they can be
restarted, rescheduled, or moved).

● Their IP addresses keep changing
dynamically.

● Manually configuring IP addresses is
not feasible in large-scale
deployments.

23

Kubernetes Service Discovery

Kubernetes provides two primary methods for service discovery:

1. DNS-Based Discovery (Preferred Method)
○ Kubernetes assigns a DNS name to each service.
○ Containers can refer to services using human-readable names instead of hardcoded

IP addresses.
○ Example: A web server can communicate with a database service using

database-service.default.svc.cluster.local instead of an unknown IP.
2. IP-Based Discovery (Less Common)

○ Kubernetes can expose services using static cluster IPs, but this approach is less
flexible than DNS.

○ Typically used for internal communication within the cluster.

24

Load Balancing: Distributing Traffic Efficiently
As applications scale, incoming traffic must be distributed across multiple instances to:

● Prevent overloading a single container.
● Ensure high availability and fault tolerance.
● Provide a smooth user experience.

25

How Kubernetes Handles Load Balancing
1. Internal Load Balancing (ClusterIP)

○ By default, Kubernetes assigns a ClusterIP to services, allowing them to distribute
requests evenly across all healthy pods within the cluster.

2. External Load Balancing
○ For services that need external access, Kubernetes supports:

■ NodePort: Exposes the service on a static port of each node.
■ LoadBalancer: Integrates with cloud providers (AWS, GCP, Azure) to create

external load balancers.
3. Ingress for Advanced Routing

○ Kubernetes Ingress allows defining custom routing rules, TLS termination, and
host-based traffic distribution.

○ Example: It can route api.example.com to backend service A and
shop.example.com to backend service B.

26

Internal Load Balancing
(ClusterIP)

○ By default, Kubernetes
assigns a ClusterIP to
services, allowing them
to distribute requests
evenly across all healthy
pods within the cluster.

ClusterIP

27

NodePort

1. External Load Balancing
○ For services that need external access, Kubernetes supports:

■ NodePort: Exposes the service on a static port of each node.

28

ClusterIP
1. Internal Load Balancing (ClusterIP)

○ By default, Kubernetes assigns a ClusterIP to services, allowing them to distribute
requests evenly across all healthy pods within the cluster.

2. External Load Balancing
○ For services that need external access, Kubernetes supports:

■ NodePort: Exposes the service on a static port of each node.
■ LoadBalancer: Integrates with cloud providers (AWS, GCP, Azure) to create

external load balancers.
3. Ingress for Advanced Routing

○ Kubernetes Ingress allows defining custom routing rules, TLS termination, and
host-based traffic distribution.

○ Example: It can route api.example.com to backend service A and
shop.example.com to backend service B.

29

Relationship between ClusterIP, NodePort, and LoadBalancer
Think of Kubernetes like this:

● Container: The actual application running (e.g., an Nginx
server or your custom API).

● Pod: A wrapper around one or more containers. It’s the
smallest deployable unit in Kubernetes.

● Node: A physical or virtual machine in the cluster where
Pods run.

● Service: A Kubernetes object that provides a stable IP and
DNS name to access Pods. It decouples access from
Pod details (like IPs, which change when Pods restart).

● So, when you create a Service:

You are saying:

"Hey Kubernetes, please give me a stable way to
reach my app Pods, regardless of how many there
are, where they run, or what their current IPs are."

You are not creating a Pod, container, or Node —
those already exist (or are created via a Deployment,
StatefulSet, etc.). The Service just sits on top and
routes traffic to the correct Pods based on label
selectors.

30

Step 1: ClusterIP – The Default, Internal Door

By default, when you create a service in Kubernetes, it’s of type ClusterIP. This makes your
service reachable only inside the cluster. It assigns a virtual IP that other Pods in the cluster can
use to talk to it. This is ideal for backend services like databases or internal microservices that
should not be accessible from outside.

In a real-world system, nearly all backend components use ClusterIP. These services are only
exposed to other services or apps inside the Kubernetes environment. For example, a web
frontend talks to an authentication service via its ClusterIP address.

31

Step 2: NodePort – The Gateway to the Outside

Now suppose you want to make that frontend web application accessible from outside the cluster.
You use a NodePort service. This exposes the service on a fixed port on every node (like port
30080). You can now access the service via <any-node-IP>:30080.

However, this approach has limitations:

● You have to remember node IPs and port numbers.
● Traffic isn't load-balanced automatically — it just lands on whichever node the request hits.
● It exposes ports directly on your nodes, which may not be ideal for security.

In most production systems, NodePort is used internally — not as a direct exposure method —
but as the backend for external load balancers or Ingress controllers.

32

Step 3: LoadBalancer – The Cloud Way

When you're running Kubernetes in a cloud environment (like AWS, GCP, Azure), you can use a
LoadBalancer service. This tells Kubernetes to provision a cloud provider's load balancer
(like AWS ELB) and assign it a public IP address.

Internally, the LoadBalancer service wraps a NodePort behind the scenes. The cloud load
balancer forwards traffic to the node’s IP on the assigned NodePort, and Kubernetes routes it to
the right Pod.

This is the default choice for exposing a service to the public internet in the cloud. It's managed,
scalable, and reliable.

33

34

35

Kubernetes Deployment
myapp-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp
spec:
 replicas: 3
 selector:
 matchLabels:
 app: myapp
 template:
 metadata:
 labels:
 app: myapp
 spec:
 containers:
 - name: myapp-container
 image: myapp:latest

kubectl apply -f myapp-deployment.yaml

Kubernetes will:

1. Create a Deployment object called myapp.
2. The Deployment will:

○ Launch 3 Pods.
○ Each Pod will run one container:

■ Name: myapp-container
■ Image: myapp:latest (pulled from your

container registry, like DockerHub)
3. Each Pod will be labeled with app: myapp.
4. Kubernetes will constantly monitor and maintain 3 running

Pods at all times:
○ If one crashes, Kubernetes restarts it.
○ If you scale up to 5 replicas later, Kubernetes creates 2

more Pods automatically.

36

What does a Deployment focus on?
● Creating and managing Pods.
● Specifying the container image to run.
● Defining how many replicas (Pods) you want.
● Managing updates, restarts, and rollbacks.

37

How to create a Kubernetes ClusterIP Service
clusteripservice.yml

apiVersion: v1
kind: Service
metadata:
 name: myapp-service
spec:
 selector:
 app: myapp
 ports:
 - protocol: TCP
 port: 8081 # The port exposed by the service
 targetPort: 80 # The port on the container

This creates a Service of type ClusterIP that:

● Is named myapp-service.
● Selects all Pods labeled app: myapp.
● Forwards incoming traffic on port 8081 (within the cluster) to port 80

on the target Pods (where the myapp container is listening).

kubectl apply -f clusteripservice.yml

Kubernetes creates a virtual IP (ClusterIP) internally and maps:

myapp-service:8081 → container on port 80

You can see the service details by running:

kubectl get svc

You’ll get an output like:

NAME TYPE CLUSTER-IP PORT(S)

myapp-service ClusterIP 10.96.0.12 8081/TCP

Then, from another Pod or instance inside the same cluster, you can test the
service by curling:

curl 10.96.0.12:8081
38

How to create a Kubernetes NodePort Service
nodeport.yml

apiVersion: v1
kind: Service
metadata:
 name: myapp-service-np
spec:
 type: NodePort
 selector:
 app: myapp
 ports:
 - protocol: TCP
 port: 8081 # Service is accessible inside cluster at this port
 targetPort: 80 # Container inside the Pod listens on port 80
 nodePort: 32002 # Static port exposed on all nodes

kubectl apply -f nodeport.yml

This creates a Service named myapp-service-np and Maps:

● myapp-service-np:8081 (within the cluster)

● <Node IP>:32002 (externally) to

● Port 80 on the myapp container

You check the service:

kubectl get svc

You’ll see output like:

NAME TYPE CLUSTER-IP PORT(S)

myapp-service-np NodePort 10.96.0.15 8081:32002/TCP

How to Access It:

From within the cluster:

curl 10.96.0.15:8081

From outside the cluster (external machine or browser):

curl <Node IP>:32002
39

Automated Rollouts and Rollbacks
One of Kubernetes' most powerful features is its ability to automatically update applications
while ensuring stability. If an update goes wrong, Kubernetes can roll back to a previous stable
version without downtime.

How Rollouts Work

● Kubernetes applies updates gradually rather than replacing all containers at once.
● It ensures that a certain number of old instances remain active while new instances are

deployed.
● This prevents sudden failures and ensures a smooth transition.

Rollback Mechanism

● If Kubernetes detects errors (e.g., failing health checks), it automatically stops the rollout.
● It can revert to a previous stable version to prevent service disruption.
● This is useful in case of misconfigurations, bugs, or compatibility issues.

40

41

Kubernetes supports horizontal scaling, automatically adjusting the number of Pods running your
application in response to demand.

Types of Scaling in Kubernetes

Manual Scaling

● Admins can manually adjust the number of Pods using the command:

kubectl scale deployment my-app --replicas=5

The command scales the my-app deployment to run exactly 5 replicas (Pods), ensuring the
specified number of instances are active in the Kubernetes cluster.

This is useful for planned workload increases but requires human intervention.

42

Horizontal Pod Autoscaler (HPA)

● Kubernetes can automatically adjust the number of running Pods based on CPU or
memory usage.

● It continuously monitors resource usage and adds/removes Pods as needed.
● Example command to enable HPA:

kubectl autoscale deployment my-app --cpu-percent=70 --min=2 --max=10

The command enables Horizontal Pod Autoscaler (HPA) for the my-app deployment,
automatically adjusting the number of Pods between 2 and 10 based on CPU usage, scaling up
when CPU exceeds 70% utilization.

This ensures applications stay responsive under fluctuating workloads.

43

Designed for Extensibility
Kubernetes is built to integrate easily with third-party tools and custom extensions without
modifying its core functionality.

● It allows developers to add new features to clusters without modifying Kubernetes source
code.

● Supports custom controllers, APIs, and plugins for handling specific tasks.

44

Kubernetes Pod,
Node & Cluster

Kubernetes (K8s) is an open-source
container orchestration platform designed to
automate deployment, scaling, and
management of containerized applications.
It follows a distributed architecture, where
multiple machines, known as nodes,
collaborate as part of a cluster. This
architecture ensures that applications remain
highly available, fault-tolerant, and
scalable, even under heavy load or in the
event of failures.

45

Pods
Containers in Kubernetes are always
wrapped inside something called a
Pod.

Whenever you want to run, stop, move,
or scale your application, Kubernetes
doesn’t interact with the container
directly—it works with the Pod.

Even if you only need to run a single
container, Kubernetes still places it
inside a Pod. That’s because the Pod
is the fundamental unit that Kubernetes
understands and manages.

46

A Pod in Kubernetes contains everything needed to run
one or more containers together in a coordinated
environment. Specifically, a Pod includes:

1. One or more containers – These are the actual
applications or services running (often just one,
but can be more if they need to share resources).

2. Shared network namespace – All containers in a
Pod share the same IP address and port space,
which allows them to communicate with each
other using localhost.

3. Shared storage volumes – Pods can define
volumes that are mounted into all containers,
allowing them to share files or configuration data.

47

Node

What is a Node in Kubernetes?

A node is a worker machine within the Kubernetes
cluster. It can be a physical server or a virtual
machine, and it is where Kubernetes runs the
application workloads inside containers.

Each node is managed by the control plane.

Each node contains the components necessary to
run Pods.

Pods are the smallest deployable units in
Kubernetes. Kubernetes does not run containers on
their own.

48

Types of nodes in Kubernetes

Kubernetes nodes are classified into two
categories:

Master Node (Control Plane)

● The brain of the Kubernetes cluster that
manages the entire system.

● Handles scheduling, scaling, and health
monitoring of workloads.

● Runs essential components:
○ API Server – Acts as the entry point

for all administrative commands.
○ Controller Manager – Ensures the

cluster stays in the desired state.
○ Scheduler – Assigns workloads

(Pods) to worker nodes.
○ etcd (Key-Value Store) – Stores

cluster configuration data.

49

API Server – The central management point that:

● Receives and validates user/API requests.
● Communicates with other components.
● Stores configuration/state data in etcd.

etcd – A distributed key-value store used for storing all cluster
data (config, state, secrets, etc.).
Scheduler – Decides which worker node should run a new Pod
based on resource availability.

Controller Manager – Continuously monitors cluster state and
performs automated recovery actions (e.g., rescheduling a failed
pod).

Worker Node – Executes workloads (Pods). It contains:

● Kubelet: Manages pod lifecycle and communicates with
the API Server.

● Kube-proxy: Manages network rules, routing traffic to the
correct Service.

● Container Runtime: Responsible for starting/stopping
containers (e.g., Docker, containerd).

Pod – The smallest deployable unit in Kubernetes, managed by
Kubelet.
Service – Provides a stable networking endpoint to access
Pods, enabling communication inside or outside the cluster.

50

51

Worker Node
● Executes application workloads

(containers) assigned by the master.
● Runs these key components:

○ Kubelet – Ensures containers are
running correctly.

○ Container Runtime – Runs the
actual containers (Docker,
containerd, etc.).

○ Kube Proxy – Manages
networking and load balancing.

52

Types of nodes in Kubernetes

53

Kubernetes Cluster
A Kubernetes cluster is a collection of nodes that work together to deploy, run, and manage
containerized applications.

Characteristics of a Cluster

● Scalability – A cluster can be dynamically expanded by adding more nodes.
● Fault Tolerance – If a node fails, Kubernetes reschedules workloads onto healthy nodes.
● Networking – All nodes are interconnected to enable smooth communication.

How Kubernetes Manages the Cluster?

1. The master node continuously monitors and schedules workloads across worker nodes.
2. Applications are deployed as Pods, which run on worker nodes.
3. The cluster ensures automatic failover if a node crashes.
4. Kubernetes networking allows nodes to communicate seamlessly without manual

intervention.

54

Kubernetes Cluster

Source: https://www.nccgroup.com/us/research-blog/detection-engineering-for-kubernetes-clusters/ 55

Pod, Node, Cluster Summary

Pod Node Cluster

Description The smallest deployable unit
in a Kubernetes cluster

A physical or virtual machine A grouping of multiple nodes
in a Kubernetes environment

Role Isolates containers from
underlying servers to boost
portability.
Provides the resources and
instructions for how to run
containers optimally.

Provides the compute
resources (CPU, volumes,
etc) to run containerized apps

Has the control plane to
orchestrate containerized
apps through nodes and pods

What it hosts Application containers,
supporting volumes, and
similar IP addresses for
logically similar containers

Pods with application
containers inside them,
kubelet

Nodes containing the pods
that host the application
containers, control plane,
kube-proxy, etc

56

Pod, Node, Cluster

Source: https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-networking-guide-beginners.html

57

Kubernetes Components

Source: https://kubernetes.io/docs/concepts/overview/components/

58

Kubernetes Networking: Pods and Communication

Kubernetes (K8s) follows a unique networking model that ensures seamless communication
between containers and services running in a cluster. The fundamental unit of networking in
Kubernetes is a Pod.

A Pod is the smallest deployable unit in Kubernetes that encapsulates one or more
containerized applications running in the same environment.

59

Kubernetes Networking: Pods and Communication

Characteristics of a Pod

● Each Pod is assigned a unique cluster-wide IP address, allowing it to communicate with
other Pods in the cluster.

● It contains one or more containers that share the same network namespace, meaning:
○ All containers inside the same Pod can communicate via localhost.
○ They share storage volumes and network interfaces.

● Pods are ephemeral, meaning they can be restarted or rescheduled to different nodes if
needed.

Importance of Pods

● Pods ensure that related containers run together and can communicate efficiently.
● Pods provide resource sharing (network, storage) among tightly coupled applications.
● Pods simplify scaling and orchestration of microservices.

60

How Kubernetes Handles Pod Networking

Kubernetes enforces a flat networking model, where all Pods in a cluster can communicate
without NAT (Network Address Translation). This means:

● Every Pod has a unique IP, ensuring direct communication.
● Pods can communicate across nodes without additional routing configurations.
● Kubernetes provides network policies to control which Pods can talk to each other.

61

How Kubernetes Handles Pod Networking

Source: https://opensource.com/article/22/6/kubernetes-networking-fundamentals
62

How Pods Communicate?

● Intra-Pod Communication
○ Containers within the

same Pod use
localhost to
communicate
(loopback).

○ They share the same
network namespace,
making inter-container
communication fast
and efficient.

Source:
https://www.researchgate.net/figure/A-sketch-of-the-networking-in-Kubernetes-intra-pod-communications-exploit-the-loopback_fig3_371922884 63

● Inter-Pod Communication
(Pod-to-Pod)

○ Pods in different nodes
communicate using
their assigned IPs.

○ The Pod network
ensures seamless
connectivity across all
nodes in the cluster.

○ Kubernetes resolves
DNS names to Pod IPs
dynamically.

Source: https://stackoverflow.com/questions/58859875/kubernetes-pod-communication-across-nodes-how-does-it-work 64

● Inter-Pod Communication
(Pod-to-Pod)

○ Pods in different nodes
communicate using
their assigned IPs.

○ The Pod network
ensures seamless
connectivity across all
nodes in the cluster.

○ Kubernetes resolves
DNS names to Pod IPs
dynamically.

Source: https://dzone.com/articles/kubernetes-networking 65

● Pod-to-Service Communication
○ Services provide a stable

endpoint for Pods, allowing
clients to reach applications
even if individual Pods restart
or change IPs.

○ Kubernetes Service
Discovery assigns a DNS
name to each service for
easy access.

Source: https://faun.pub/resolving-service-discovery-problems-in-kubernetes-60773a12ce77 66

● Pod-to-Service Communication
○ Services provide a stable

endpoint for Pods, allowing
clients to reach applications
even if individual Pods restart
or change IPs.

○ Kubernetes Service
Discovery assigns a DNS
name to each service for
easy access.

Source: https://rtfm.co.ua/en/kubernetes-clusterip-vs-nodeport-vs-loadbalancer-services-and-ingress-an-overview-with-examples/ 67

Understanding Kubernetes Services

Kubernetes provides a dynamic networking model, where applications run in Pods that can be
restarted, rescheduled, or replaced. Since Pod IPs are ephemeral (temporary), direct
communication between them is unreliable. This is where Kubernetes Services come in.

What is a Kubernetes Service?

A Service in Kubernetes is a logical abstraction that exposes and manages network access to a
set of Pods. It provides a stable endpoint (IP or DNS) that remains constant even if the
underlying Pods change.

Key Functions of a Service

● Ensures stable communication between Pods despite dynamic changes.
● Load balances traffic across multiple Pod instances.
● Facilitates external access to applications running inside the cluster.

68

Types of Kubernetes Services
Kubernetes supports different types of services, depending on how Pods need to be accessed:

1. ClusterIP (Default)
○ Exposes the service internally within the cluster.
○ Best for Pod-to-Pod communication inside Kubernetes.

2. NodePort
○ Exposes the service externally on a fixed port of each node.
○ Useful for testing and basic external access.

3. Load Balancer
○ Integrates with cloud providers (AWS, GCP, Azure) to expose the service externally via a

managed load balancer.
○ Best for production deployments requiring high availability.

4. ExternalName
○ Maps the service to an external DNS name instead of a Pod IP.
○ Used for redirecting traffic to services outside Kubernetes.

69

ClusterIP: The default service type, exposing
the service only within the cluster for internal
communication.

NodePort: Exposes the service on a static
port on each node, allowing external access
via <NodeIP>:<Port>.

LoadBalancer: Integrates with cloud provider
load balancers to expose the service
externally with automatic traffic distribution.

ExternalName: Maps the service to an
external DNS name, redirecting requests to
an external service outside the cluster.

70

Kubernetes Service API and YAML Definition
A Service is defined using YAML configuration,
specifying how it should route traffic.

apiVersion: Defines which Kubernetes API version
to use.

kind: Specifies that this resource is a Service.

metadata: Provides a name for the Service
(my-service).

spec:

● selector: Matches Pods labeled MyApp,
ensuring traffic is routed correctly.

● ports:
○ protocol: Defines TCP as the

communication protocol.
○ port (80): The Service's exposed port.
○ targetPort (9376): The actual port

inside the Pod where the application
runs.

Basic YAML Structure of a Service
apiVersion: v1

kind: Service

metadata:

name: my-service

spec:

selector:

app.kubernetes.io/name: MyApp

ports:

protocol: TCP

port: 80

targetPort: 9376
71

Summary of Kubernetes Services
Service Discovery:

● Kubernetes provides built-in DNS resolution, allowing Pods to find services using a name like
my-service.default.svc.cluster.local.

● This eliminates the need for hardcoded IPs.

Traffic Routing & Load Balancing:

● Services distribute incoming requests across multiple Pods to balance the workload.
● If a Pod crashes, Kubernetes automatically redirects traffic to healthy Pods.

Types of Kubernetes Services:

● ClusterIP (Default): Accessible only within the cluster, used for internal communication.
● NodePort: Exposes the service on a static port on every node for external access.
● LoadBalancer: Integrates with cloud providers to expose the service via a managed load balancer.
● ExternalName: Maps the service to an external DNS name.

72

Kubectl Commands: Managing Kubernetes

Kubernetes provides a command-line tool called kubectl to interact with the cluster, manage
resources, and monitor the system.

Checking Node Status with kubectl get nodes

● The kubectl get nodes command lists all the nodes in a cluster along with their status,
roles, age, and version.

● It is crucial for monitoring cluster health and identifying whether a node is functioning
correctly.

73

Example Output

NAME STATUS ROLES AGE VERSION

docker-desktop Ready control-plane 19h v1.30.2

NAME: The node's name (e.g., docker-desktop).

STATUS: Indicates whether the node is operational.

ROLES: Defines if the node is a control-plane (master) or worker node.

AGE: Shows how long the node has been running.

VERSION: Displays the Kubernetes version running on the node.

74

Creating a Deployment

The following command creates a Deployment named hello-node and runs a container using the image
registry.k8s.io/e2e-test-images/agnhost:2.39:

kubectl create deployment hello-node --image=registry.k8s.io/e2e-test-images/agnhost:2.39 --
/agnhost netexec --http-port=8080

Breakdown

○ kubectl create deployment hello-node → Creates a Deployment named hello-node.
○ --image=registry.k8s.io/e2e-test-images/agnhost:2.39 → Specifies the container image to use.
○ /agnhost netexec --http-port=8080 → Runs the container with the netexec command, exposing

port 8080.

75

Checking Pod Status

The kubectl get pods command lists all the running Pods in the cluster, showing their status
and availability.

This is useful for verifying if applications are running correctly.

Example Command & Output

kubectl get pods

NAME READY STATUS RESTARTS AGE

hello-node-55fdcd95bf-22mh2 1/1 Running 0 18h

76

Understanding Output:

● NAME: Unique name of the Pod (hello-node-55fdcd95bf-22mh2).
● READY: Shows the number of running containers in the Pod (1/1 means one container is

running successfully).
● STATUS: Current state of the Pod (Running means it is active).
● RESTARTS: Number of times the Pod has restarted (0 means it has not restarted).
● AGE: How long the Pod has been running (18h means 18 hours).

77

Viewing Kubernetes Events

kubectl get events provides a chronological list of cluster events, helping debug issues and understand how workloads are scheduled.

It shows details like Pod creation, image pulling, container start, and scaling actions.

kubectl get events

LAST SEEN TYPE REASON OBJECT MESSAGE

34s Normal Scheduled pod/hello-node-55fdcd95bf-22mh2 Successfully assigned to node

33s Normal Pulling pod/hello-node-55fdcd95bf-22mh2 Pulling image "registry.k8s.io/e2e-test-images/agnhost:2.39"

30s Normal Pulled pod/hello-node-55fdcd95bf-22mh2 Successfully pulled image

28s Normal Created pod/hello-node-55fdcd95bf-22mh2 Created container agnhost

27s Normal Started pod/hello-node-55fdcd95bf-22mh2 Started container agnhost

78

Understanding Output

LAST SEEN: Time since the event occurred.

TYPE: Normal (expected behavior) or Warning (potential issue).

REASON: What triggered the event (Scheduled, Pulling, Created, Started).

OBJECT: The resource affected (Pod hello-node-55fdcd95bf-22mh2).

MESSAGE: Describes what happened (e.g., Pod successfully assigned, image pulled).

79

When managing applications in Kubernetes, it is essential to monitor logs and inspect
services to ensure smooth operation and troubleshooting. kubectl provides commands like
kubectl logs and kubectl get services to analyze application behavior and
networking.

kubectl logs <pod-name>

Example output

kubectl logs hello-node-55fdcd95bf-22mh2

I1112 14:20:48.871286 1 log.go:195] Started HTTP server on port 8080

I1112 14:20:48.872371 1 log.go:195] Started UDP server on port 8081

80

Viewing Services

The kubectl get services command lists all services running in the cluster.

kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
6d23h

nginx-service-np NodePort 10.108.167.246 <none> 8081:30107/TCP 83m

EXTERNAL-IP: If the service is externally accessible (e.g., via a LoadBalancer).

PORT(S): Ports used by the service (8081:30107/TCP means traffic on port 8081 inside the cluster is
mapped to 30107 externally).

81

ClusterIP (Internal Networking in Kubernetes)

In Kubernetes, ClusterIP is the default service type that allows internal communication between
Pods within the cluster. It exposes an internal IP but does not allow external access.

● A ClusterIP service provides internal communication between different components (Pods)
inside the cluster.

● It automatically assigns an internal IP address that is accessible only within the cluster.
● This service is mainly used for intra-cluster communication, such as backend services

interacting with databases.

82

Characteristics of ClusterIP

● Default Service Type – When no service type is specified, Kubernetes assigns ClusterIP.
● Internal-Only Communication – The service is not accessible from outside the cluster.
● Pods Access via Service Name – Other Pods communicate with the service using DNS

resolution (service-name.namespace.svc.cluster.local) instead of direct Pod IPs.
● Load Balancing – Even if multiple Pods back the service, Kubernetes distributes traffic

between them.

83

Example YAML for a ClusterIP Service
apiVersion: v1

kind: Service

metadata:

 name: my-clusterip-service

spec:

 selector:

 app: my-app

 ports:

 - protocol: TCP

 port: 80 # Service port

 targetPort: 9376 # Container's port

84

Kubernetes Service Type: NodePort

A NodePort service in Kubernetes allows external access to applications running inside the cluster
by assigning a static port (30,000–32,767) on every node in the cluster. It forwards incoming traffic
to the appropriate Pods.

● It exposes a service externally by binding it to a static port on each cluster node.
● Traffic enters the cluster through this port and gets forwarded to the appropriate service

and Pods.
● This allows external clients to reach Kubernetes applications without a load balancer.

85

Source: https://octopus.com/blog/difference-clusterip-nodeport-loadbalancer-kubernetes

86

Characteristics of
NodePort

● Allows External Access – Services can
be accessed from outside the cluster via
NodeIP:NodePort.

● Each Service Gets One Port – The port
is chosen from the range 30,000–32,767.

● Traffic is Distributed – Requests
entering through the NodePort are
load-balanced across all Pods.

● Works Without a Load Balancer –
Unlike LoadBalancer services, NodePort
does not require cloud provider
integration.

Source: https://www.geeksforgeeks.org/kubernetes-nodeport-service/ 87

Example YAML for a NodePort Service

Internal Pods listen on port 9376.

The service routes traffic from port 80 to
the Pods.

The service is externally accessible via
<NodeIP>:31000.

apiVersion: v1

kind: Service

metadata:

 name: my-nodeport-service

spec:

 type: NodePort

 selector:

 app: my-app

 ports:

 - protocol: TCP

 port: 80 # Internal service port

 targetPort: 9376 # Port on the Pod

 nodePort: 31000 # Exposed static port on each Node
88

More about NodePort

How NodePort Works

1. User sends a request to
<NodeIP>:<NodePort>, e.g.,
192.168.1.100:31000.

2. Kubernetes routes the traffic to the
NodePort service.

3. The service forwards the request to
one of the matching Pods.

4. The Pod processes the request and
returns the response.

When to Use NodePort?

● When an application must be
accessed externally without a
LoadBalancer.

● For on-premise Kubernetes clusters
where cloud-based load balancers are
unavailable.

● When developing/testing services that
need external access without extra
networking configurations.

89

Limitations of NodePort

● Limited Port Range – You can only use 30,000–32,767, which might conflict with existing
services.

● Not Ideal for Large-Scale Apps – Works best for small applications; not optimized for
production.

● Requires Node IP Knowledge – Clients must know the node’s IP address to access
services.

90

LoadBalancer Service (External Traffic Management)
A LoadBalancer service in Kubernetes provides a way to expose applications externally by automatically
provisioning a public IP address and distributing traffic among the backend Pods.

● It is the most convenient way to expose a Kubernetes service externally in cloud environments.
● It creates a public-facing IP address and routes external traffic to the appropriate Pods.
● Load balancing is handled automatically, ensuring even traffic distribution across running

instances.

Characteristics of LoadBalancer

● External Accessibility – The service is assigned a public IP address, making it accessible to
external clients.
Built-in Load Balancing – Spreads incoming traffic evenly across available Pods.
Cloud-Provider Dependent – Works with cloud platforms like AWS, GCP, and Azure, which
provide native load balancers.
Ideal for Web Applications – Best suited for HTTP(S) services, APIs, and internet-facing
applications.

91

Example YAML for a LoadBalancer Service

● The service receives traffic on port 80 and routes it
to Pods running on port 9376.

● A public IP is assigned automatically by the cloud
provider.

● The service ensures even traffic distribution across
all healthy Pods.

apiVersion: v1

kind: Service

metadata:

 name: my-loadbalancer-service

spec:

 type: LoadBalancer

 selector:

 app: my-app

 ports:

 - protocol: TCP

 port: 80 # External port exposed to users

 targetPort: 9376 # Port on the Pod handling the request 92

