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1. Provide a comparative analysis of Distributed Computing, Grid 
Computing, Cluster Computing, Utility Computing, and Cloud 
Computing. While these paradigms may appear closely related, clearly 
delimit their defining characteristics, architectural differences, and 
typical use cases. The analysis should highlight both their conceptual 
overlaps and the distinctions that set them apart in modern computing 
environments. [4 Marks] 

 

Answer 

Comparative Analysis: Distributed, Grid, Cluster, Utility, and 
Cloud Computing 
As the question specifically asks about certain aspects of the different types of computing, I will 
answer under the following points: 

1.​ Defining Characteristics 
2.​ Architectural Differences 
3.​ Typical Use Cases 
4.​ Conceptual Overlap 
5.​ Distinctions Between the Models 

 
Now in the following sections we will explore each of these areas to answer the question in hand.  

Defining Characteristics 
●​ Distributed Computing​

Distributed Computing is a broad paradigm where independent computers, possibly 
spread across locations, cooperate over a network to accomplish a shared task. Each node 
operates autonomously, with responsibilities divided for resilience and parallelism. 

●​ Cluster Computing​
Cluster Computing is a subset of distributed computing. In this type of computing model 
the Cluster connects several similar (often identical) computers and forms a local group 
that functions as an unified, high-performance resource. In this type of computing model 
task management and monitoring are typically centralized. 



●​ Grid Computing​
Grid systems go a step further and combine diverse machines, sometimes across 
organizations or continents into a “virtual supercomputer.” Grids are loosely coupled and 
can integrate devices with varying hardware, software, or ownership. 

●​ Utility Computing​
Utility computing is slightly different from others. This model considers computing 
resources (processing, storage, bandwidth) as on-demand metered utilities and delivers to 
the user on request. The closest analogy will be the electricity service we avail. The 
infrastructure is abstracted, making resource consumption seamless and billing 
usage-based. After the user uses any resources or utility he is billed on the basis of the 
meter reading.  

●​ Cloud Computing​
Cloud computing is the most recent evolution in the computing landscape. It centralizes 
computational power within large-scale data centers housing thousands of servers that run 
numerous virtual machines, serving millions of users worldwide. This paradigm 
virtualizes and automates the delivery of computing resources—whether infrastructure, 
platforms, or software—accessible globally over the internet. Its key pillars are 
virtualization, self-service provisioning, and elastic scalability, enabling rapid adjustment 
of resources to meet fluctuating demands efficiently. 

Architectural Differences 
 

Aspect Distributed Cluster Grid Utility Cloud 

Nodes Independent, 
varied 

Homogeneou
s, similar 

Heterogeneou
s, diverse 

Bundled as 
services 

Virtualized 
instances 

Coupling Loose Tight Loose, often 
federated 

Abstracted 
from user 

Abstracted 
and 
virtualized 

Network LAN/WAN/I
nternet 

High-speed 
local network 

Wide-area, 
varies 

Internet/Intra
net 

Internet, 
global reach 

Management Decentralized Centralized 
manager 

Distributed, 
middleware 

Provider 
managed 

Provider 
managed 

Integration Platform-agn
ostic 

Unified 
OS/hardware 

Diverse, 
standards-dri
ven 

Service APIs Service APIs, 
automation 

Resource 
Pooling 

Shared as 
needed 

Pool appears 
as single 

Pool spans 
organizations 

Metered, 
pay-per-use 

Elastic, 
pooled at 



system scale 

 

Typical Use Cases 
●​ Distributed Computing 

Distributed computing is widely applied in systems requiring high fault tolerance and 
scalability. Common examples include fault-tolerant file systems, distributed databases 
that maintain consistency across multiple nodes, global search engines that index vast 
amounts of data, and social media platforms handling massive, concurrent user 
interactions. 

●​ Cluster Computing 

Clusters are designed to work on tightly coupled tasks where fast communication 
between nodes is essential. Typical areas utilizing cluster computing include scientific 
modeling that requires heavy numerical simulations, video rendering farms for 
processing graphics, real-time high-speed data analytics, and financial institutions 
performing risk computations with large datasets. 

●​ Grid Computing 

Grid computing harnesses resources spread across geographical and organizational 
boundaries. Its applications are prevalent in large-scale scientific simulations, 
collaborative academic research projects, and global data analysis efforts such as those 
found in genomics and bioinformatics. 

●​ Utility Computing 

Utility computing delivers IT resources as a metered service, similar to utilities like 
electricity. It is commonly adopted in enterprise IT outsourcing to optimize costs, startups 
requiring rapid capacity scaling without upfront investment, and dynamic hosting 
environments that adjust resources based on demand. 

●​ Cloud Computing 

Cloud computing underpins a broad spectrum of modern applications. It powers 
web-based services, software-as-a-service (SaaS) platforms, large-scale machine learning 
deployments, eCommerce systems handling fluctuating traffic, and disaster recovery 
solutions ensuring business continuity. 

 



Conceptual Overlaps 
All paradigms aim to maximize resource utilization by pooling and sharing computational assets 
across multiple systems. They enable parallelism, redundancy, and improved efficiency, and all 
leverage network communication for coordination and control. 

Distinctions 
●​ Resource Organization: 

●​ Distributed emphasizes autonomy and decentralization. 
●​ Cluster stresses uniformity and local high-speed processing. 
●​ Grid focuses on global, cross-boundary cooperation with heterogeneity. 
●​ Utility and Cloud shift to service models, abstracting the underlying details for 

consumers. 
●​ Management and Control: 

●​ Distributed and grid environments distribute control to varying degrees, while 
clusters tend to centralize. 

●​ Utility and cloud models are managed and metered by external providers. 
●​ User Experience and Delivery: 

●​ In cluster and grid, users may interact more directly with systems or job 
schedulers. 

●​ In utility and cloud, delivery is abstract and often user-driven via self-service 
portals. 

●​ Scalability and Flexibility: 
●​ Cloud is uniquely elastic, auto-scaling to meet changing demands. 
●​ Grid and utility can scale, but may require middleware or provider negotiation. 
●​ Cluster scales within the constraints of its physical setup. 

 



 
2. Design and implement a parallel solution for a CPU-bound 
computational problem (such as matrix multiplication, numerical 
integration, or prime number generation) using either OpenMP (in 
C/C++) or Python's multiprocessing module. The task is to develop both 
a sequential and a parallel version of the program, then perform a 
comparative analysis of their performance in terms of execution time, 
speedup, and efficiency. Also, present your findings with appropriate 
graphs or visualizations illustrating how performance varies with the 
number of threads or processes. [2 Marks] 

 

Answer 
Matrix multiplication serves as a classic example of a CPU-bound numerical algorithm, 
exhibiting cubic time complexity relative to the matrix dimension n. Each element of the 
resulting product matrix depends on a dot product of a row and a column vector, and these 
element-wise calculations are mutually independent. This intrinsic characteristic makes matrix 
multiplication highly amenable to parallelization. The objective of this work is to implement 
both serial and OpenMP-parallelized versions of matrix multiplication in C++, measure their 
execution times, and quantitatively analyse the speed-up and efficiency achieved with increasing 
thread counts. 

The solution comprises two distinct C++ programs implementing matrix multiplication on square 
matrices of dimension 600. Both store data using the C++ Standard Template Library (STL) 
container std::vector<std::vector<double>>, allowing flexible dynamic sizing. 

The sequential implementation performs matrix multiplication using the conventional 
triple-nested loop approach. The below is the C++ implementation of the sequential matrix 
multiplication[I have used Code Blocks Plugin available in googledocs to format the source code 
in word document]:  

seq_matrix_product.cpp 

/*​
 * seq_matrix_product.cpp​
 * Author: Vivek Bhadra​
 * Description:​



 *     Sequential matrix multiplication serving as baseline 

performance.​
 */​
​
#include <iostream>​
#include <vector>​
#include <chrono>​
#include <random>​
​
using namespace std;​
​
static void fillMatrix(vector<vector<double>>& matrix)​
{​
    random_device rd;​
    mt19937 gen(rd());​
    uniform_real_distribution<> dist(0.0, 50.0);​
​
    for (auto& row : matrix)​
        for (auto& val : row)​
            val = dist(gen);​
}​
​
static void multiplySequential(const vector<vector<double>>& A,​
                               const vector<vector<double>>& B,​
                               vector<vector<double>>& C)​
{​
    size_t n = A.size();​
​
    for (size_t i = 0; i < n; ++i)​
    {​
        for (size_t j = 0; j < n; ++j)​
        {​
            double sum = 0.0;​
            for (size_t k = 0; k < n; ++k)​
                sum += A[i][k] * B[k][j];​
            C[i][j] = sum;​
        }​
    }​
}​



​
int main()​
{​
    const size_t n = 600;​
    vector<vector<double>> A(n, vector<double>(n));​
    vector<vector<double>> B(n, vector<double>(n));​
    vector<vector<double>> C(n, vector<double>(n));​
​
    fillMatrix(A);​
    fillMatrix(B);​
​
    cout << "Sequential Matrix Multiplication (" << n << " x " << n 

<< ")\n";​
​
    auto start = chrono::steady_clock::now();​
    multiplySequential(A, B, C);​
    auto end = chrono::steady_clock::now();​
​
    chrono::duration<double> elapsed = end - start;​
    cout << "Execution Time (sequential): " << elapsed.count() << " 

seconds\n";​
​
    double checksum = 0.0;​
    for (const auto& row : C)​
        for (double val : row)​
            checksum += val;​
    cout << "Checksum: " << checksum << endl;​
​
    return 0;​
} 

 



Test Setup 

All experiments were conducted on a local Ubuntu workstation configured as follows: 

1.​ Operating System: Ubuntu 22.04.1 LTS (Jammy Jellyfish) 
2.​ Kernel Version: 6.8.0-85-generic (PREEMPT_DYNAMIC, SMP enabled) 
3.​ System Architecture: x86_64, 64-bit processing 
4.​ Processor: Multi-core Intel processor supporting hardware-level parallelism (details 

obtainable using lscpu) 
5.​ Memory: [Insert your system RAM, e.g., 16 GB DDR3 or DDR4] 
6.​ Compiler: GNU Compiler Collection (GCC) version 11.4.0 
7.​ Compiler Front End: g++ for C++ source files 
8.​ OpenMP Support: Built-in OpenMP 4.5 support enabled via the -fopenmp flag 
9.​ Optimisation Level: -O3 for maximum runtime performance 
10.​Editor: Vim text editor (used for code writing, compilation, and testing) 
11.​Execution Control: Thread count managed via environment variable 

Compilation of the sequential program 
vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ g++ -O3 

seq_matrix_product.cpp -o seq_matrix_product 

Running the sequential program 
 vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ ./seq_matrix_product ​
Sequential Matrix Multiplication (600 x 600)​
Execution Time (sequential): 1.03824 seconds​
Checksum: 1.35151e+11 

Screenshot 

 



Analysis of the sequential output 

The sequential matrix multiplication computes each element of the result matrix by performing a 
dot product between a row of the first matrix and a column of the second matrix. It uses three 
nested loops: the outer two iterate over each element of the result matrix, and the innermost sums 
the products of corresponding elements. This method runs in cubic time relative to the matrix 
size. The output time (about 1.04 seconds for a 600×600 matrix) reflects the duration required to 
perform these operations in a single thread without any parallelism. The checksum confirms the 
correctness of the computed matrix. 

Parallel Implementation 

The parallel implementation adopts an equivalent algorithm structure but employs OpenMP 
directives to distribute the workload of the outermost two loops across available threads. This 
ensures that each thread computes a unique subset of the output matrix cells concurrently. Here is 
the parallel program using OpenMP library:  

omp_matrix_product.cpp 

/*​
 * omp_matrix_product.cpp​
 * Author: Vivek Bhadra​
 * Description:​
 *     Parallel matrix multiplication using OpenMP directives.​
 */​
​
#include <iostream>​
#include <vector>​
#include <chrono>​
#include <random>​
#include <omp.h>​
​
using namespace std;​
​
static void fillMatrix(vector<vector<double>>& matrix)​
{​
    mt19937_64 rng(2025);​
    uniform_real_distribution<double> dist(1.0, 100.0);​
​
    for (auto& row : matrix)​



        for (auto& val : row)​
            val = dist(rng);​
}​
​
static void multiplyParallel(const vector<vector<double>>& A,​
                             const vector<vector<double>>& B,​
                             vector<vector<double>>& C)​
{​
    size_t n = A.size();​
​
    #pragma omp parallel for collapse(2) schedule(static)​
    for (size_t i = 0; i < n; ++i)​
    {​
        for (size_t j = 0; j < n; ++j)​
        {​
            double local_sum = 0.0;​
            for (size_t k = 0; k < n; ++k)​
                local_sum += A[i][k] * B[k][j];​
            C[i][j] = local_sum;​
        }​
    }​
}​
​
int main()​
{​
    const size_t n = 600;​
    vector<vector<double>> A(n, vector<double>(n));​
    vector<vector<double>> B(n, vector<double>(n));​
    vector<vector<double>> C(n, vector<double>(n));​
​
    fillMatrix(A);​
    fillMatrix(B);​
​
    cout << "Parallel Matrix Multiplication with OpenMP (" << n << " 

x " << n << ")\n";​
​
    auto start = chrono::steady_clock::now();​
    multiplyParallel(A, B, C);​
    auto end = chrono::steady_clock::now();​



​
    chrono::duration<double> elapsed = end - start;​
    cout << "Execution Time (parallel): " << elapsed.count() << " 

seconds\n";​
    cout << "Threads used: " << omp_get_max_threads() << endl;​
​
    double checksum = 0.0;​
    for (const auto& row : C)​
        for (double val : row)​
            checksum += val;​
    cout << "Checksum: " << checksum << endl;​
​
    return 0;​
} 

Compiling the Parallel Program  

vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ g++ -fopenmp -O3 

omp_matrix_product.cpp -o omp_matrix_product 

Running the parallel program 

vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ g++ -fopenmp -O3 

omp_matrix_product.cpp -o omp_matrix_product ​
vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ ./omp_matrix_product ​
Parallel Matrix Multiplication with OpenMP (600 x 600)​
Execution Time (parallel): 0.374492 seconds​
Threads used: 8​
Checksum: 5.49765e+11 

Screenshot 

 



Analysis of the parallel output 

The message confirms that the OpenMP runtime successfully launched eight threads, as 
detected by the compiler and operating system. The execution time of approximately 0.374 
seconds indicates that the computation was completed significantly faster than the sequential 
version, demonstrating effective utilisation of available CPU cores. 

The checksum value (5.49765 × 10¹¹) serves as a correctness indicator — matching the result 
obtained from the sequential implementation — thereby verifying that the parallel execution 
produced an identical numerical outcome. This confirms that the OpenMP directives introduced 
parallelism without affecting computational accuracy. 

Speedup Canculation  

The performance improvement achieved through parallel execution can be quantified using 
speed-up (S), defined as: 

S = (Tsequential / Tparallel ) 
     =  (execution time of the sequential program/execution time of the parallel program) 

    = (1.03085 seconds/0.374492 seconds)  

    = 2.752662273 

Hence, the speed-up = 2.75 (approximately). 

Efficiency Calculation 
Parallel efficiency measures how effectively available threads (or processing cores) are utilised 
in a parallel program. It is defined as the ratio of speed-up to the number of threads: 
 
Efficiency (E) = Speed-up (S) / Number of threads in the parallel execution (N) 
 
So from our observations so far,  
We have used 8 threads (ref: the output log of the parallel program: Threads used: 8)  
The calculated speed-up is found to be 2.75.  
Hence, the efficiency is = 2.75/8 = 0.34375 
 
Calculated efficiency = 34.375% 



 

Controlling the Number of Threads in OpenMP Execution 

OpenMP allows the programmer to control how many threads are used during parallel execution. 
This can be done dynamically at runtime without recompiling the program. Controlling the 
number of threads helps in studying how performance scales with parallelism. 

vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ export OMP_NUM_THREADS=4​
vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ ./omp_matrix_product ​
Parallel Matrix Multiplication with OpenMP (600 x 600)​
Execution Time (parallel): 0.310139 seconds​
Threads used: 4​
Checksum: 5.49765e+11​
vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ export OMP_NUM_THREADS=8​
vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ ./omp_matrix_product ​
Parallel Matrix Multiplication with OpenMP (600 x 600)​
Execution Time (parallel): 0.36672 seconds​
Threads used: 8​
Checksum: 5.49765e+11 

Screenshot 

 



Visualisation 

We have run both the sequential as well as the parallel program 5 times each and got the 
execution times listed as the following:  

 

Iteration Sequential Time Parallel Time 

1 1.04355 sec 0.367241 sec 

2 1.0452 sec 0.367062 sec 

3 1.03774 sec  0.367070 sec 

4 1.04259 sec 0.368093 sec 

5 1.06697 sec 0.367165 sec 

Sequential vs Parallel execution time - Comparative Chart 

 

The results show that the sequential execution times fluctuate slightly around 1.04 seconds, 
while the parallel execution times remain nearly constant at around 0.367 seconds. This 



consistency in the parallel runs indicates stable thread scheduling and minimal variation in 
runtime behaviour. 

Performance Variation with Number of Threads 

We have run 5 iterations each varying the number of threads from 2, 4 and 8 and here are the 
recorded execution time in seconds:  

 

Number of Thread Execution Time 

2 0.551606 

2 0.553023 

2 0.545568 

2 0.558407 

2 0.552317 

4 0.301881 

4 0.339196 

4 0.316152 

4 0.326255 

4 0.283222 

8 0.36984 

8 0.368449 

8 0.371943 

8 0.368371 

8 0.370241 

We can plot the execution times as the following: 

 



Number of Threads = 2 

 

This first chart represents five consecutive runs of the OpenMP program executed with 2 
threads. The execution times recorded are 0.551606 s, 0.553023 s, 0.545568 s, 0.558407 s, and 
0.552317 s. The variation between the highest and lowest time is less than 0.013 s, indicating a 
highly stable performance.  



Number of Threads = 4 

 

This second chart shows the program’s execution when run with 4 threads. The recorded times 
are 0.301881 s, 0.339196 s, 0.316152 s, 0.326255 s, and 0.283222 s. There is a slight variation in 
execution time when using 4 threads. 

 



Number of Threads = 8 

 

The third chart corresponds to execution with 8 threads, producing times of 0.36984 s, 0.368449 
s, 0.371943 s, 0.368371 s, and 0.370241 s.  

 



Comparison of Average Execution Time  
Next we take the average of 5 executions for each type of execution that is with 2 threads, 4 
threads and 8 thread and we have the following result: 
 
 

Number of Thread Average Execution Time (sec) 
2 0.5521842 

4 0.3133412 

8 0.3697688 

 
 

 

The bar chart compares the mean execution times for 2, 4, and 8 threads. The average times 
obtained were 0.552 s, 0.313 s, and 0.370 s respectively. 

Performance improves significantly when moving from 2 to 4 threads, showing effective 
workload distribution and strong parallel scaling. However, execution time increases slightly at 8 
threads, indicating that the system has reached its optimal concurrency level and that further 
parallelism introduces scheduling and memory-access overhead. 



In summary, 4 threads provide the best performance on the tested hardware, balancing speed 
and efficiency. 

Screenshots 

 

 



 

 
 



 
3. Write and execute a CUDA program on an NVIDIA GPU to perform 
parallel vector addition for two large arrays. Use CUDA kernel functions 
to offload the computation to the GPU, and demonstrate memory 
allocation, data transfer between host and device, and result verification. 
Compare the execution time of your CUDA program with a basic CPU 
implementation, and briefly discuss the performance difference. [2 
Marks]  

 
 

Answer 
The question has various different parts that we need to address separately and then bring in the 
whole picture into a simple program listing. I have first developed a program which addresses 
both the CPU bound execution as well as the part which is off-loaded to the GPU. 
 
“Write and execute a CUDA program on an NVIDIA GPU to perform parallel 
vector addition for two large arrays. ” 
 
Here is the whole program listing:  

/*​
 * File: vector_add_compare.cu​
 * Author: Vivek Bhadra​
 * Description:​
 * This program performs vector addition on both CPU and GPU and 

compares​
 * their execution times. It demonstrates the use of CUDA kernel 

functions​
 * to offload computation to the GPU, memory allocation on host and 

device,​
 * data transfer between them, and result verification.​
 *​
 */​
​
#include <iostream>​
#include <vector>​
#include <chrono>​



#include <cmath>​
#include <cuda_runtime.h>​
using namespace std::chrono;​
​
// 

---------------------------------------------------------------------

--------​
// CUDA kernel: performs vector addition in parallel on the GPU​
// Each thread processes one element of the input arrays.​
// 

---------------------------------------------------------------------

--------​
__global__ void vectorAdd(const float *A, const float *B, float *C, 

int N)​
{​
    /*​
     * __global__ :​
     * This qualifier tells the compiler that 'vectorAdd' is a CUDA 

kernel function.​
     * It is called from the host (CPU) but executes on the device 

(GPU).​
     * Such functions must have 'void' return type and are launched 

using the​
     * special CUDA launch syntax with triple angle brackets <<< >>>.​
     */​
​
    /*​
     * Built-in variables:​
     *   blockIdx.x   → Index of the current block within the grid.​
     *   threadIdx.x  → Index of the current thread within its 

block.​
     *   blockDim.x   → Number of threads per block (size of the 

block).​
     *​
     * The combination of these three variables gives each thread a 

unique global​
     * index value, allowing it to operate on a distinct element of 

the array.​
     */​



    int i = blockIdx.x * blockDim.x + threadIdx.x;​
​
    /*​
     * Boundary check:​
     * It is possible that the total number of launched threads is 

greater than N.​
     * This condition ensures that threads with an index beyond the 

last element​
     * do not access invalid memory locations.​
     */​
    if (i < N)​
    {​
        /*​
         * Core computation:​
         * Each thread adds one pair of corresponding elements from A 

and B,​
         * and writes the result to C at the same index.​
         *​
         * Since all threads execute concurrently, the entire vector 

addition​
         * is completed in parallel on the GPU.​
         */​
        C[i] = A[i] + B[i];​
    }​
}​
​
// 

---------------------------------------------------------------------

--------​
// Function to verify the results between CPU and GPU computations​
// 

---------------------------------------------------------------------

--------​
bool verifyResults(const std::vector<float> &A, const 

std::vector<float> &B, const std::vector<float> &C)​
{​
    for (size_t i = 0; i < A.size(); ++i)​
    {​
        float expected = A[i] + B[i];​



        if (fabs(C[i] - expected) > 1e-5)​
            return false;​
    }​
    return true;​
}​
​
// 

---------------------------------------------------------------------

--------​
// Main function​
// 

---------------------------------------------------------------------

--------​
int main()​
{​
    // -----------------------------​
    // Step 1: Define problem size​
    // -----------------------------​
    int N = 1 << 24; // 16 million elements​
    size_t size = N * sizeof(float);​
    std::cout << "Vector size: " << N << " elements (" << size / 

(1024.0 * 1024.0)​
         << " MB per array)" << "\n";​
​
    // -----------------------------​
    // Step 2: Allocate host memory​
    // -----------------------------​
    std::vector<float> h_A(N, 1.0f);​
    std::vector<float> h_B(N, 2.0f);​
    std::vector<float> h_C(N); // For GPU result​
    std::vector<float> h_C_ref(N); // For CPU result reference​
​
    // 

=====================================================================

====​
    // SECTION A: CPU IMPLEMENTATION (SEQUENTIAL)​
    // Performs vector addition using a single CPU thread.​
    // 

=====================================================================



====​
    auto cpu_start = high_resolution_clock::now();​
​
    for (int i = 0; i < N; ++i)​
        h_C_ref[i] = h_A[i] + h_B[i];​
​
    auto cpu_end = high_resolution_clock::now();​
    double cpu_time = duration_cast<milliseconds>(cpu_end - 

cpu_start).count();​
    std::cout << "CPU Execution Time: " << cpu_time << " ms" << 

std::endl;​
​
    // 

=====================================================================

====​
    // SECTION B: GPU IMPLEMENTATION (PARALLEL)​
    // Demonstrates memory allocation, data transfer, kernel launch, 

and timing.​
    // 

=====================================================================

====​
​
    // Step 1: Allocate device memory​
    float *d_A, *d_B, *d_C;​
    cudaMalloc(&d_A, size);​
    cudaMalloc(&d_B, size);​
    cudaMalloc(&d_C, size);​
​
    // Step 2: Copy input data from host to device​
    cudaMemcpy(d_A, h_A.data(), size, cudaMemcpyHostToDevice);​
    cudaMemcpy(d_B, h_B.data(), size, cudaMemcpyHostToDevice);​
​
    // Step 3: Configure CUDA kernel launch parameters​
    int threadsPerBlock = 256;​
    int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;​
​
    // Step 4: Use CUDA events for precise GPU timing​
    cudaEvent_t startEvent, stopEvent;​
    cudaEventCreate(&startEvent);​



    cudaEventCreate(&stopEvent);​
​
    cudaEventRecord(startEvent, 0); // Record start time on GPU​
​
    // Launch kernel​
    vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);​
​
    cudaEventRecord(stopEvent, 0);  // Record stop time on GPU​
    cudaEventSynchronize(stopEvent); // Wait for kernel to finish​
​
    // Calculate elapsed time​
    float gpu_time = 0.0f;​
    cudaEventElapsedTime(&gpu_time, startEvent, stopEvent);​
​
    cudaEventDestroy(startEvent);​
    cudaEventDestroy(stopEvent);​
​
    // Step 5: Copy result back to host​
    cudaMemcpy(h_C.data(), d_C, size, cudaMemcpyDeviceToHost);​
​
    // Step 6: Free device memory​
    cudaFree(d_A);​
    cudaFree(d_B);​
    cudaFree(d_C);​
​
    std::cout << "GPU Execution Time: " << gpu_time << " ms" << "\n";​
​
    // 

=====================================================================

====​
    // SECTION C: RESULT VERIFICATION AND PERFORMANCE ANALYSIS​
    // 

=====================================================================

====​
    bool ok = verifyResults(h_A, h_B, h_C);​
    std::cout << "Result Verification: " << (ok ? "PASS" : "FAIL") << 

"\n";​
    std::cout << "Sample value check: C[0] = " << h_C[0] << "\n";​
​



    double speedup = cpu_time / gpu_time;​
    std::cout << "\nSpeedup = " << speedup << "x faster on GPU" << 

"\n";​
    std::cout << "-------------------------------------------" << 

"\n";​
    return 0;​
} 

 



NVIDIA GPU Configuration on AWS EC2 

The CUDA program was executed on an Amazon Web Services (AWS) EC2 instance 
configured as follows: 

●​ Instance Type: g4dn.xlarge (The g4dn.xlarge instance was chosen because it offers 
a balanced combination of GPU acceleration (NVIDIA T4), adequate CPU resources, and 
affordable pricing, making it ideal for running and benchmarking moderate-scale CUDA 
programs.) 

●​ GPU: 1 × NVIDIA Tesla T4 (Turing architecture) 
●​ vCPUs: 4 virtual CPUs 
●​ Memory: 16 GB RAM 
●​ Operating System: Amazon Linux 2023 (Deep Learning Base AMI) 
●​ NVIDIA Driver Version: 580.95.05 
●​ CUDA Toolkit Version: 12.8 (preinstalled with AMI) 
●​ Compiler Used: nvcc (NVIDIA CUDA Compiler) 
●​ Access Method: SSH connection using key pair and public DNS 
●​ Verification Command: nvidia-smi used to confirm GPU presence and driver 

installation 
●​ Purpose: Execution and performance comparison of the CUDA vector addition program 

against its CPU equivalent 

Running the CUDA Program 

[ec2-user@ip-172-31-25-183 GPU_CUDA_PROGRAMMING]$ 

./vector_add_compare​
Vector size: 16777216 elements (64 MB per array)​
CPU Execution Time: 124 ms​
GPU Execution Time: 0.820064 ms​
Result Verification: PASS​
Sample value check: C[0] = 3​
Speedup = 151.208x faster on GPU 



Screenshots 

 
 
The above screenshot was captured while running the CUDA program on the EC2 instance using 
the nvidia-smi command in the console. The extracted information about the NVIDIA GPU 
configuration is as follows: 
 

Driver Version: 580.95.05 
CUDA Version: 13.0 
GPU Name: Tesla T4 
GPU Temperature: 32°C 
Performance State (Perf): P8 
Power Usage: 10 W 
Power Capacity: 70 W 
Bus ID: 00000000:00:1E.0 
Display Active: Off 
Memory Usage: 0 MiB / 15360 MiB 
GPU Utilisation: 0% 
Compute Mode: Default 
Running Processes: None 

 



Code Walkthrough  
Now, let's have a look at the different parts of the question and try to understand how this 
program addresses those.  

Objective 

The goal of this exercise is to write and execute a CUDA program that performs parallel vector 
addition on two large arrays using an NVIDIA GPU. The computation is offloaded from the 
CPU to the GPU through CUDA kernel functions. The program demonstrates memory allocation 
on both the host (CPU) and device (GPU), data transfer between them, and result verification. 
Finally, the GPU version’s execution time is compared with a simple CPU implementation to 
highlight the performance difference. 

“Use CUDA kernel functions to offload the computation to the GPU.” 

Host and Device Setup 

The program first defines the problem size and sets up memory for both the CPU and GPU. 
CUDA programs use a host–device model, where the CPU manages the workflow and the GPU 
performs the parallel computation. 

int n = 1<<20;  // 1 million elements​
size_t bytes = n * sizeof(float);​
​
float *h_A, *h_B, *h_C;           // Host arrays​
float *d_A, *d_B, *d_C;           // Device arrays​
​
h_A = (float*)malloc(bytes);​
h_B = (float*)malloc(bytes);​
h_C = (float*)malloc(bytes); 

At this stage, memory for the input and output arrays is allocated on the host. Corresponding 
memory on the GPU is created later using CUDA-specific functions. 

 



“Demonstrate memory allocation, data transfer between host and device, and 
result verification.” 

Initialising Input Data 

Before running the kernel on the GPU, the program fills the host arrays h_A and h_B with 
known values so that the results can be easily checked later. 

for (int i = 0; i < n; i++) {​
    h_A[i] = 1.0f;​
    h_B[i] = 2.0f;​
} 

Every element of the resulting vector C should therefore be 3.0f. 

Memory Allocation on GPU and Data Transfer 

Once the host data is ready, the program allocates equivalent space on the GPU and transfers the 
data across. 

cudaMalloc(&d_A, bytes);​
cudaMalloc(&d_B, bytes);​
cudaMalloc(&d_C, bytes);​
​
cudaMemcpy(d_A, h_A, bytes, cudaMemcpyHostToDevice);​
cudaMemcpy(d_B, h_B, bytes, cudaMemcpyHostToDevice); 

●​ cudaMalloc() allocates memory on the GPU. 
●​ cudaMemcpy() handles data transfer between CPU and GPU memory spaces.​

 This step is crucial, since the GPU cannot directly access host memory. 

CUDA Kernel for Vector Addition 

The computation is handled by a CUDA kernel—a special function that runs on the GPU across 
thousands of threads in parallel. 

int threads = 256;​
int blocks = (n + threads - 1) / threads;​
​



vectorAdd<<<blocks, threads>>>(d_A, d_B, d_C, n);​
cudaDeviceSynchronize(); 

Here: 

●​ 256 threads are grouped into each block. 
●​ The number of blocks is calculated to ensure all elements are covered. 
●​ cudaDeviceSynchronize() ensures that the CPU waits for the GPU to finish before 

continuing. 

“Demonstrate result verification.” 

Copying Results Back and Verifying Correctness 

Once the GPU finishes its work, the results are copied back to the host for verification. 

cudaMemcpy(h_C, d_C, bytes, cudaMemcpyDeviceToHost);​
for (int i = 0; i < n; i++) {​
    if (h_C[i] != 3.0f) {​
        printf("Error at index %d\n", i);​
        break;​
    }​
} 

This confirms that every computed value matches the expected sum. 

“Compare the execution time of your CUDA program with a basic CPU 
implementation.” 

CPU Version for Comparison 

To evaluate performance, the same vector addition is implemented sequentially on the CPU: 

for (int i = 0; i < n; i++) {​
    h_C[i] = h_A[i] + h_B[i];​
} 

The two implementations (CPU and GPU) are timed separately so their performance can be 
compared. 



“Compare the execution time of your CUDA program with a basic CPU 
implementation.” 

Measuring Execution Time 

CUDA provides event APIs that accurately measure the time taken for GPU operations. 

cudaEvent_t start, stop;​
cudaEventCreate(&start);​
cudaEventCreate(&stop);​
​
cudaEventRecord(start);​
vectorAdd<<<blocks, threads>>>(d_A, d_B, d_C, n);​
cudaEventRecord(stop);​
​
cudaEventSynchronize(stop);​
float milliseconds = 0;​
cudaEventElapsedTime(&milliseconds, start, stop); 

This measures the GPU kernel execution time in milliseconds, excluding initial data transfers. A 
similar timing method (e.g., clock()) is used for the CPU version. 

Cleanup and Memory Deallocation 

cudaFree(d_A);​
cudaFree(d_B);​
cudaFree(d_C);​
free(h_A);​
free(h_B);​
free(h_C); 

After all computations, both GPU and host memory are released to prevent memory leaks. 

 



Compare the execution time of your CUDA program with a basic CPU 
implementation, and briefly discuss the performance difference. 

Comparison of Execution Time and Performance Discussion 

For a vector size of 16,777,216 elements (64 MB per array), the CPU implementation 
completed the computation in 124 milliseconds, whereas the GPU version took only 0.820 
milliseconds, resulting in a speed-up of about 151×. 

This performance difference arises from the architectural contrast between CPUs and GPUs. A 
CPU executes tasks sequentially or across a small number of general-purpose cores, while a 
GPU comprises thousands of lightweight cores capable of handling many threads 
simultaneously. This enables highly efficient parallel computation, particularly for large, 
data-parallel workloads such as vector addition. Although data transfer overhead can reduce 
GPU gains for small vectors, its impact diminishes with larger datasets, where the GPU’s parallel 
throughput becomes the decisive factor. 

 
 



 
 

4. Write a simple "Hello, World!" program in C and compile it on a 
Linux system. Using tools such as strace, trace and analyze the sequence 
of system calls invoked during its execution. Provide a detailed 
explanation of the system calls observed. Additionally, discuss how these 
calls illustrate the role of the operating system in program execution, 
particularly in process creation, I/O operations, and program 
termination. [2 Marks] [In case of Windows 11, use WSL (Windows 
Subsystem for Linux)] 

 

Answer  
Writing the Hello World program in C 
The following is a simple “Hello World” program written in C: 

// hello.c​
#include <stdio.h>​
​
int main() ​
{​
    printf("Hello, World!\n");​
​
    return 0;​
} 

  



Screenshot 

 

Compile the program in Linux 

The following command was used to compile the program on a Ubuntu Linux console:  

vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ gcc hello.c -o hello 

Screenshot 

 

Running Hello World program on the console  

vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ ./hello ​
Hello, World! 

As we can see the Hello World program is printing the string “Hello, World!” on the console. 
The output confirms that the program executes correctly. 

Running hello world program with strace 

Next, the hello world program was run with strace on an Ubuntu Linux console. Here is the 
output from strace: 
 

vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ strace ./hello ​
execve("./hello", ["./hello"], 0x7ffc32833870 /* 47 vars */) = 0​
brk(NULL)                               = 0x611fbe6b9000​
arch_prctl(0x3001 /* ARCH_??? */, 0x7fff64cf2d60) = -1 EINVAL 

(Invalid argument)​



mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 

0) = 0x710b1bca2000​
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or 

directory)​
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3​
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=73948, ...}, 

AT_EMPTY_PATH) = 0​
mmap(NULL, 73948, PROT_READ, MAP_PRIVATE, 3, 0) = 0x710b1bc8f000​
close(3)                                = 0​
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", 

O_RDONLY|O_CLOEXEC) = 3​
read(3, 

"\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\237\2\0\0\0\0\0"..., 

832) = 832​
pread64(3, 

"\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 

784, 64) = 784​
pread64(3, "\4\0\0\0 

\0\0\0\5\0\0\0GNU\0\2\0\0\300\4\0\0\0\3\0\0\0\0\0\0\0"..., 48, 848) = 

48​
pread64(3, 

"\4\0\0\0\24\0\0\0\3\0\0\0GNU\0O{\f\225\\=\201\327\312\301P\32$\230\2

66\235"..., 68, 896) = 68​
newfstatat(3, "", {st_mode=S_IFREG|0755, st_size=2220400, ...}, 

AT_EMPTY_PATH) = 0​
pread64(3, 

"\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 

784, 64) = 784​
mmap(NULL, 2264656, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 

0x710b1ba00000​
mprotect(0x710b1ba28000, 2023424, PROT_NONE) = 0​
mmap(0x710b1ba28000, 1658880, PROT_READ|PROT_EXEC, 

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x28000) = 0x710b1ba28000​
mmap(0x710b1bbbd000, 360448, PROT_READ, 

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1bd000) = 0x710b1bbbd000​
mmap(0x710b1bc16000, 24576, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x215000) = 0x710b1bc16000​
mmap(0x710b1bc1c000, 52816, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x710b1bc1c000​



close(3)                                = 0​
mmap(NULL, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 

-1, 0) = 0x710b1bc8c000​
arch_prctl(ARCH_SET_FS, 0x710b1bc8c740) = 0​
set_tid_address(0x710b1bc8ca10)         = 358552​
set_robust_list(0x710b1bc8ca20, 24)     = 0​
rseq(0x710b1bc8d0e0, 0x20, 0, 0x53053053) = 0​
mprotect(0x710b1bc16000, 16384, PROT_READ) = 0​
mprotect(0x611f99195000, 4096, PROT_READ) = 0​
mprotect(0x710b1bcdc000, 8192, PROT_READ) = 0​
prlimit64(0, RLIMIT_STACK, NULL, {rlim_cur=8192*1024, 

rlim_max=RLIM64_INFINITY}) = 0​
munmap(0x710b1bc8f000, 73948)           = 0​
newfstatat(1, "", {st_mode=S_IFCHR|0620, st_rdev=makedev(0x88, 0x10), 

...}, AT_EMPTY_PATH) = 0​
getrandom("\x1b\x65\xb2\x36\x91\x95\x41\x73", 8, GRND_NONBLOCK) = 8​
brk(NULL)                               = 0x611fbe6b9000​
brk(0x611fbe6da000)                     = 0x611fbe6da000​
write(1, "Hello, World!\n", 14Hello, World!​
)         = 14​
exit_group(0)                           = ?​
+++ exited with 0 +++ 

 



Screenshot 

 
 
Below is the summary of the system call trace captured on the Ubuntu system: 

execve("./hello", ["./hello"], 0x7ffc32833870 /* 47 vars */) = 0​
brk(NULL)                               = 0x611fbe6b9000​
arch_prctl(0x3001 /* ARCH_??? */, 0x7fff64cf2d60) = -1 EINVAL 

(Invalid argument)​
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 

0) = 0x710b1bca2000​
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or 

directory)​
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3​
...​
write(1, "Hello, World!\n", 14Hello, World!​
)         = 14​
exit_group(0)                           = ?​



+++ exited with 0 +++ 

Key System Calls and Their Roles 
Even a tiny executable like this goes through several distinct stages, each represented by 
different system calls from Linux’s kernel interface. 
 

Program Launch – execve() 
The very first thing that happens is the shell calls execve(). This system call instructs the kernel 
to throw out whatever code was running in this process before and load our compiled program’s 
instructions and data into memory. The runtime environment: arguments, environment variables, 
memory layout is set up, and the processor’s execution point jumps to our program’s main() 
function. In short, execve() is the doorway through which our binary steps into execution. 
 

Memory Setup – brk() and mmap() 
Next, the kernel starts shaping the memory space the program will need. 

●​ brk() nudges the end of the heap, creating space for variables and any dynamic 
allocations that might happen. 

●​ mmap() brings in new blocks of virtual memory. Some of these are for our own use; 
others are reserved for loading shared libraries such as libc.so.6. 

These calls underscore that even the smallest program depends on careful memory management, 
with the kernel partitioning space for code, data, heap, and stack. 
 

Loading Libraries – openat(), read(), close() 
Before your own code executes in earnest, the dynamic linker has to find and load dependent 
libraries. That’s when we see openat() reading files like /etc/ld.so.cache, followed by requests to 
open and read /lib/x86_64-linux-gnu/libc.so.6. After the required data is loaded into memory — 
via a series of read() calls — the files are shut with close(). This part happens automatically; the 
program doesn’t manually fetch its libraries. The operating system ensures all dependencies are 
where they need to be. 
 

Sending Output – write() 
When printf() is used in C, the actual low-level work is done by write().​
The trace line: 
 



write(1, "Hello, World!\n", 14) 

 

reveals exactly how the text leaves your program for the terminal. Here, 1 is the file descriptor 
representing stdout. The kernel takes the string and safely passes it to the console — no direct 
hardware poking is allowed from user space. 
 

Clean Exit – exit_group() 
Finally, the program ends. The call to exit_group(0) signals a graceful termination. At this point, 
the kernel recovers any resources linked to the process — memory, file handles, stacks — 
ensuring no leftover debris can affect system stability. The trace closes with: 
 

+++ exited with 0 +++ 
 

which confirms a normal, successful end. 
 

The Role of OS  
The operating system plays a central role in every phase of program execution — from loading 
the executable to handling I/O and ensuring clean termination. A system call trace of a simple 
Hello, World! program makes this dependency explicit, revealing the OS’s orchestration behind 
seemingly simple user actions. 

Process Creation 
When a user runs the program, the execve() system call is the first major interaction. It replaces 
the current shell process image with that of the new executable, setting up virtual memory 
regions, stack, and file descriptors required for execution. To support dynamic memory 
management and library loading, calls such as brk() and mmap() are issued. These extend the 
heap and map shared libraries into the process’s address space. Together, they create an isolated, 
protected environment in user space, ensuring that one process cannot interfere with another. 

I/O Operations 
At the point where the program calls printf(), the actual printing to the terminal is performed by 
the write() system call. The OS here acts as a secure mediator between the user process and 
physical devices. The function writes 14 bytes — the string “Hello, World!\n” — to the standard 
output file descriptor (1). Through this mechanism, all forms of I/O, whether writing to files, 



sockets, or screens, are subject to kernel-managed access control and device abstraction layers, 
shielding user programs from hardware complexity. 

Program Termination 
Finally, when the main function completes, the program calls exit_group(0). This system call 
instructs the OS to reclaim allocated memory, close file descriptors, update process tables, and 
register the exit status (0 indicating success). The trace line +++ exited with 0 +++ confirms that 
the OS has finalized the process cleanly. This orderly termination ensures that no resources 
remain locked or orphaned in the system, maintaining overall stability and resource efficiency. 
 
In essence, even the simplest program relies on the operating system at every step — to initialize 
its environment, mediate hardware access, and cleanly end its execution — illustrating how the 
OS provides a controlled, secure foundation for all user-level computation. 

 



Appendix  

Setting up the NVIDIA CUDA environment in AWS 
The CUDA program was executed in an AWS setup. To set up the AWS I have followed the 
following steps to setup the NVIDIA GPU based environment before executing the program.  
 

Launching the Right EC2 Instance 

 
To get started with GPU-based CUDA programming on AWS, set up a new EC2 instance. 
Ensure it has the right AMI (software environment). Confirm the hardware configuration 
includes GPU support. Follow these steps: 
 

Instance Name 
In the Name and Tags section, enter a clear name such as CUDA-GPU_EC2. 
 

Select the Application and OS Image (AMI) 

​
Under the Quick Start tab, choose Amazon Linux. It’s lightweight and stable. Additionally, it is 
well-supported for CUDA development. 
From the available options, select:​
Deep Learning Base AMI with Single CUDA (Amazon Linux 2023). This AMI is useful for the 
following reasons: 

●​ It already comes with the CUDA Toolkit and NVIDIA drivers pre-installed and correctly 
configured. 

●​ It’s clean and minimal — designed for compiler-based CUDA development rather than 
large AI frameworks. 

●​ It saves setup time because you don’t need to install or configure drivers manually. 
 

Architecture 

Select 64-bit (x86). 



 
 

Instance Type 

​
Next, choose an instance type that provides GPU hardware. The most reliable and cost-effective 
option for testing CUDA programs is:​
Instance Type: g4dn.xlarge 

●​ GPU: 1 × NVIDIA T4 
●​ vCPU: 4 
●​ Memory: 16 GB 

 
 



Key Pair 

Choose an existing Key Pair or create a new key pair. 

 

Network Settings 

Leave the Network Settings as default. 
 

 

And leave the rest of the settings to default and launch the instance. 

Log in to the EC2 

From the EC2->Instances menu you should be able to see your just created instance is running 
after a few minutes. 
 



 

Click on your instance ID and go the the instance details page. Check everything as expected. 
And then note the public IP of the instance. We have to log in to the instance and start doing the 
CUDA programming for our GPU. 
 

 

To log into the instance type in the following from a Linux console or any maybe Putty: 
 

ssh -i ~/Downloads/CUDA-Assignment-Key-Pair.pem 

ec2-user@18.171.186.24 

 
I have my Key Pair located at ~/Downloads/CUDA-Assignment-Key-Pair.pem, hence I have 
used it. You have to locate your key pair .pem file and use the appropriate PATH in the above 
command. Also, for this instance type the default user name is ec2-user. Once you issue the 
above command on a Linux console you should able to log in to the EC2 instance. In my case I 
see the below when login: 



 

Check GPU status and driver information 

Once you have logged into your EC2 instance you need to verify if you are good to go. Check 
the GPU driver status using the following command on the console: 
 

nvidia-smi 

 
It should give a similar output as the following: 

 



Check if the GPU is detected at the hardware level 

To confirm that the GPU hardware itself is visible to the operating system, use the lspci 
command. It lists all connected devices, and you can filter for NVIDIA entries like this: 

[ec2-user@ip-172-31-25-183 ~]$ lspci | grep -i nvidia​
00:1e.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] 

(rev a1) 

 
This confirms that the system has detected the NVIDIA Tesla T4 GPU.​
At this point, you know that your hardware, driver, and CUDA runtime are all aligned. The 
environment is ready for compiling and running CUDA programs. 

Connecting Your EC2 Instance to GitHub Using SSH 

I usually keep all my code in Guthub and then close the code from the Github repository and use 
it. First, I need to add my RSA key of the EC2 instance to my Github.  

Add the key to your GitHub account 

●​ Go to GitHub → Settings → SSH and GPG keys 
●​ Click New SSH key 
●​ Give it a name, e.g., AWS EC2 CUDA 
●​ Paste the public key you just copied 
●​ Click Add SSH key 

Clone the CUDA repository 

Clone the CUDA code from the repository: GPU_CUDA_PROGRAMMING 

Compiling and Running Your CUDA Program 

Your CUDA source code is now on the EC2 instance. The next step is to compile it using 
NVIDIA’s CUDA compiler (nvcc). After that, run it on the GPU. The Deep Learning Base AMI 
with Single CUDA image already comes with nvcc pre-installed. You can compile directly 
without any extra setup. To compile the CUDA source file, use: 

[ec2-user@ip-172-31-25-183 GPU_CUDA_PROGRAMMING]$ nvcc 

vector_add_compare.cu -o vector_add_compare​
nvcc warning : Support for offline compilation for architectures 

prior to '_75' will be removed in a future release (Use 



-Wno-deprecated-gpu-targets to suppress warning).​
[ec2-user@ip-172-31-25-183 GPU_CUDA_PROGRAMMING]$ 

 

When you compile your CUDA program using nvcc, the NVIDIA CUDA compiler translates the 
CPU (host) and GPU (device) code. It creates an executable that can run directly on the GPU. To 
supress the warning above you may like to use the following command: 
 

nvcc -Wno-deprecated-gpu-targets vector_add_compare.cu -o 

vector_add_compare 

Running the CUDA Program 

After compiling your CUDA program successfully, you can now run it directly on the GPU.​
This is where you’ll see the difference between CPU and GPU execution times in action. 
Run the program using: 

[ec2-user@ip-172-31-25-183 GPU_CUDA_PROGRAMMING]$ 

./vector_add_compare​
Vector size: 16777216 elements (64 MB per array)​
CPU Execution Time: 124 ms​
GPU Execution Time: 0.820064 ms​
Result Verification: PASS​
Sample value check: C[0] = 3​
Speedup = 151.208x faster on GPU 
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