Assignment Document
Cloud Infrastructure and
Systems Software

(S1-25 CCZG502)

Table of Content

ATISWET «ecerureeruenssnesssessssecsaesssnessseessssssassssassssesssssssasssssssssesssssssassssassssesssssssassssassssesssssssassssassssasssnsssanss 4
Comparative Analysis: Distributed, Grid, Cluster, Utility, and Cloud Computing................... 4
Defining CharaCteriStICS. ... ceuuueeiieriieiiieriieett et ie et etee ettt et e e teesete e bt e sebeebeesaeeenbeesseeenseennseenne 4
Architectural DIfferenCes........coueviiiiiiiiiiiieei et 5
TYPICAL USE CASES.....uvieiieeitieiieeiteeite ettt ettt et ettt e st e e bt e s et e ebeesabeenbeeenbeenseesnseenseesnseenseas 6
ConcePtual OVETLAPS.coveiuiiiiiieeitete ettt sttt 7
DIISHINCTIONS. ..ttt ettt ettt ettt ettt b et eat e s bt e bt ea e e bt e bt eatesbee bt eatesaeebeeanenbeenee 7
TEST SETUP ...ttt ettt et e e it e et e sttt esbbeeebbeesabeeesabeeesaneeenas 11
Compilation of the sequential Programi............cccceeviieiiiiiieiieie e 11
Running the sequential Program..........ccoeevieriireiiiniineeee e 11
N 16 (153 1R | TSRS 11
Analysis of the sequential OULPUL.........ccc.oviiriiiiiniiieetee e 12
Parallel Implementation...........coeeviriiriiiiiiiiceeeee e 12
Compiling the Parallel Program..........c.cccoceeoiiiiiiiiiiiinicicicecceeeee e 14
Running the paralle] program.............ccoceoiiiiiiiiiiieeee et 14
N 16 (15301 | TSRS 14
Analysis of the parallel OUIPUL...........coouiiiiiiii e 15
Speedup CanCulation.c.cceoiiiiiiiriii ettt 15
Efficiency CalCulation.........oeoouiiiiiiiriiiiiiicieccet ettt 15
Controlling the Number of Threads in OpenMP EXecution.........c..cccceeceeriivenicneeneneeneenns 16
N 16 (153 11 | TP USRPRSN 16
VASUAIISALION. ...ttt ettt et e et e et e s bt e eabeeseteembeesabeenbeessaesnseesaeaans 17
Sequential vs Parallel execution time - Comparative Chart.............cccoeoeeeiienieeiinnieeiene 17
Performance Variation with Number of Threads..........ccoccooiiiiiiiiiiiiiiie e 18
Comparison of Average Execution TIMe.........cccoceeviiriiniiniiiiniiiiiiceciceceeeeeee e 22
SCTEENSNOLS. ...ttt ettt ettt e et e bt e et e e ate et e esseeeabeesaeeenbeeaeas 23
NVIDIA GPU Configuration on AWS EC2.....cccoiiiiiiiiiiiiiiiiieneeeeeeecieeese e 32
Running the CUDA Program.........cccccoeeieriiniiiiiniiieeiesieeieeeeeie sttt 32
SCTEENSNOLS. ...ttt ettt et e at e et e st e et e e st e et e e bt e eateeeateenbeenneas 33
Code WalKthroUuGh.......coouiiiiii ettt ettt et 34

L@ 10} 15107 5 L7 TSRO SUP 34
HOSt and DEVICE SETUP......cecviieiiieeiiie ettt ettt e e e et e e ebee e e baeessaeeesssaeesseens 34
Initialising INPUt Data.........c..ooeuiiiiiiiieiie et et e e e v e e e e e e sraee e 35
Memory Allocation on GPU and Data Transfer..........cccccoeiveeiiieiiiiniiiiieiiieeieceee 35
CUDA Kernel for Vector Addition...........c.eeiiiiiiiiiiiiiieeieeieeieee et 35
Copying Results Back and Verifying Correctness..........ccceeevveeeviveeeiiieesiiieeeiieeeieeeevee e 36

CPU Version for COMPATISON........eeecveeeereeerieeesieeesteeesteeestreeesreeessseessseesseeesseeesssesessnes 36

Measuring EXECUtion TiMe..........cccuieuieriiiiiieniieeiiesie et eeee et eteeseeeveeseneeseesaeeenseeens 37

Cleanup and Memory DealloCation...........cc.veeeeeciieriieiiienieeiieeie et ee 37
Comparison of Execution Time and Performance DiSCuSSiON...........ccccveeevverieeieenvencieennnene 38
ATISWET aeceureierueiseecssecsnsssansssassssessssssssesssassssesssasssssssssssssesssassssessssssssssssasssssssssssssssssassssssssssssassssasssns 39
Writing the Hello World program in C...........ccoooeiiiiiieiiienieeieece et 39
SCTEENSNOL. ...ttt s h ettt sae bt eh ettt e b enees 40
Compile the program N LINUX........ccoeeuiiiiiiiieiieeiiesie ettt ettt sve e seae s e 40
SCTEENSNOL. ...ttt ettt ettt et b et et ae e b enees 40
Running Hello World program on the console...........ccccoeeieeiieriiiiiieniieiieieeeeee e 40
Running hello world program with Strace...........cccceeeviieiieriiiiiieeiieecee e 40
SCTEENSNOL. ...ttt sttt ettt et b ettt e b eanes 43
Key System Calls and Their ROIES..........ccocuiiiiiiiiiiieeiieiiecie et 44
Program Launch — €XECVE()....ccuieruieriiiriieeieeiieeie ettt ettt seeeebe e aesbeesaee e e ssaeenneas 44
Memory Setup — brk() and Mmap().......cceereeeeiierieeiienieeieee e 44
Loading Libraries — openat(), read(), ClOSE().....ccverirerieriieriieniieiieeieeieeeve e eee e 44
Sending OULPUL — WITLE()..vveeveerereeiierieeiierieeieeeteeteesteeteesteeesbeessresseessaeesseessnesnseenssennne 44
Clean EXit — @Xit ZIOUP()..eecveerreerieeriieiieeiiiesieerieesteeteesiteeseessaeeseessseasseesseesnseesssessseensens 45
The ROLE OF OS ...ttt sttt e 45
PrOCESS CTEALION.eiuiiieniieiieeiieie ettt ettt ettt sttt et sbe et st e b enteeaeeees 45
I/ OPCIALIONS.eeeuiieiiieeiieeiie ettt ettt ettt e sttt eeite e bt e esbeesaeesaeesseessseenseesnseanseessseenseas 45
Program TermiNatioN..........cccueeruieriiieniieeieeiie et eniee et e seeeeteesaeeebeesaaeebeessaeesseessnesnseensseanne 46
APPEIAIXo.uuriiirsrrcssnicsssnissssnsssssnsssssnesssssssssssossssssssssssssssssssasssssssssssssssssssesssssssssssesssssssssssssssssssssssss 47
Setting up the NVIDIA CUDA environment in AWS.........ccooiviiiiiiniieiieiecieeeee e 47
Launching the Right EC2 INStance............cocuveiiiiriiiiieieeieeieeeeeee e 47
INSTANCE NAME.eoiiieiiiiiieeee ettt ettt 47
Select the Application and OS Image (AMI).......cccoeeiieiiiiiiieieeieeee e 47
ATCRITECTUTE. ...ttt sttt et sb et st sae et e esbe e e et 47
INSEANCE TYPC...etiiiiiieeiie ettt et sb e et e st e sabeeeabeesnneeea 48
K@Y Pl ..ottt et ettt et e et e et esabeebeeenbeenbeeenaeensaen 49
INEIWOTK SEHNES. ...c.evieiiieeiiieiieeiie ettt ettt ettt et ettt eesttesbeesseeenseeseesnseenseeenseenseennns 49
Login to the EC2.....iiiiiiiiciee ettt ettt sttt enbeeenae e 49
Check GPU status and driver information.............ccueereeeiienieeiieenieeieeree e esee e see e 51
Check if the GPU is detected at the hardware level..............ccoovviiiiiiniiniiiiniiiiieeeee, 52
Connecting Your EC2 Instance to GitHub Using SSH............ccccoviiiiiiieiiiniieieeeeee 52
Add the key to your GitHUD aCCOUNL.........c.cooiiiiiiiiiiiieiecee e 52
Clone the CUDA T@POSIEOTYc.ueeruiieiieriieeiienieeieesteeteesiteeteesaeeseessseesseesssesseessseenseansnas 52
Compiling and Running Your CUDA Program...........cccccceevuierieeniienieeiiesie e 52

Running the CUDA Program..........ccceoouiiiiieriieiienieeiteste ettt et eteesieeeveesseesreesana e 53

1. Provide a comparative analysis of Distributed Computing, Grid
Computing, Cluster Computing, Utility Computing, and Cloud
Computing. While these paradigms may appear closely related, clearly
delimit their defining characteristics, architectural differences, and
typical use cases. The analysis should highlight both their conceptual
overlaps and the distinctions that set them apart in modern computing
environments. [4 Marks]

Answer

Comparative Analysis: Distributed, Grid, Cluster, Utility, and
Cloud Computing

As the question specifically asks about certain aspects of the different types of computing, I will
answer under the following points:

Defining Characteristics
Architectural Differences
Typical Use Cases

Conceptual Overlap

Distinctions Between the Models

A e

Now in the following sections we will explore each of these areas to answer the question in hand.

Defining Characteristics

e Distributed Computing
Distributed Computing is a broad paradigm where independent computers, possibly
spread across locations, cooperate over a network to accomplish a shared task. Each node
operates autonomously, with responsibilities divided for resilience and parallelism.

® C(Cluster Computing
Cluster Computing is a subset of distributed computing. In this type of computing model
the Cluster connects several similar (often identical) computers and forms a local group
that functions as an unified, high-performance resource. In this type of computing model
task management and monitoring are typically centralized.

e Grid Computing
Grid systems go a step further and combine diverse machines, sometimes across

organizations or continents into a “virtual supercomputer.” Grids are loosely coupled and

can integrate devices with varying hardware, software, or ownership.
e Utility Computing
Utility computing is slightly different from others. This model considers computing
resources (processing, storage, bandwidth) as on-demand metered utilities and delivers to
the user on request. The closest analogy will be the electricity service we avail. The
infrastructure is abstracted, making resource consumption seamless and billing
usage-based. After the user uses any resources or utility he is billed on the basis of the

meter reading.

e Cloud Computing
Cloud computing is the most recent evolution in the computing landscape. It centralizes
computational power within large-scale data centers housing thousands of servers that run
numerous virtual machines, serving millions of users worldwide. This paradigm
virtualizes and automates the delivery of computing resources—whether infrastructure,
platforms, or software—accessible globally over the internet. Its key pillars are
virtualization, self-service provisioning, and elastic scalability, enabling rapid adjustment
of resources to meet fluctuating demands efficiently.

Architectural Differences

Aspect Distributed | Cluster Grid Utility Cloud
Nodes Independent, | Homogeneou | Heterogeneou | Bundled as Virtualized
varied s, similar s, diverse services instances
Coupling Loose Tight Loose, often | Abstracted Abstracted
federated from user and
virtualized
Network LAN/WAN/I | High-speed Wide-area, Internet/Intra | Internet,
nternet local network | varies net global reach
Management | Decentralized | Centralized Distributed, Provider Provider
manager middleware | managed managed
Integration Platform-agn | Unified Diverse, Service APIs [Service APIs,
ostic OS/hardware | standards-dri automation
ven
Resource Shared as Pool appears | Pool spans Metered, Elastic,
Pooling needed as single organizations | pay-per-use pooled at

system scale

Typical Use Cases

Distributed Computing

Distributed computing is widely applied in systems requiring high fault tolerance and
scalability. Common examples include fault-tolerant file systems, distributed databases
that maintain consistency across multiple nodes, global search engines that index vast
amounts of data, and social media platforms handling massive, concurrent user
interactions.

Cluster Computing

Clusters are designed to work on tightly coupled tasks where fast communication
between nodes is essential. Typical areas utilizing cluster computing include scientific
modeling that requires heavy numerical simulations, video rendering farms for
processing graphics, real-time high-speed data analytics, and financial institutions
performing risk computations with large datasets.

Grid Computing

Grid computing harnesses resources spread across geographical and organizational
boundaries. Its applications are prevalent in large-scale scientific simulations,
collaborative academic research projects, and global data analysis efforts such as those
found in genomics and bioinformatics.

Utility Computing

Utility computing delivers IT resources as a metered service, similar to utilities like
electricity. It is commonly adopted in enterprise IT outsourcing to optimize costs, startups
requiring rapid capacity scaling without upfront investment, and dynamic hosting
environments that adjust resources based on demand.

Cloud Computing

Cloud computing underpins a broad spectrum of modern applications. It powers
web-based services, software-as-a-service (SaaS) platforms, large-scale machine learning
deployments, eCommerce systems handling fluctuating traffic, and disaster recovery
solutions ensuring business continuity.

Conceptual Overlaps

All paradigms aim to maximize resource utilization by pooling and sharing computational assets
across multiple systems. They enable parallelism, redundancy, and improved efficiency, and all
leverage network communication for coordination and control.

Distinctions

o Resource Organization:
Distributed emphasizes autonomy and decentralization.

Cluster stresses uniformity and local high-speed processing.

Grid focuses on global, cross-boundary cooperation with heterogeneity.

Utility and Cloud shift to service models, abstracting the underlying details for
consumers.

e Management and Control:

e Distributed and grid environments distribute control to varying degrees, while
clusters tend to centralize.
e Utility and cloud models are managed and metered by external providers.
e User Experience and Delivery:
e In cluster and grid, users may interact more directly with systems or job
schedulers.
e In utility and cloud, delivery is abstract and often user-driven via self-service
portals.
e Scalability and Flexibility:
e Cloud is uniquely elastic, auto-scaling to meet changing demands.
® Grid and utility can scale, but may require middleware or provider negotiation.
e C(Cluster scales within the constraints of its physical setup.

2. Design and implement a parallel solution for a CPU-bound
computational problem (such as matrix multiplication, numerical
integration, or prime number generation) using either OpenMP (in
C/C++) or Python's multiprocessing module. The task is to develop both
a sequential and a parallel version of the program, then perform a
comparative analysis of their performance in terms of execution time,
speedup, and efficiency. Also, present your findings with appropriate
graphs or visualizations illustrating how performance varies with the
number of threads or processes. [2 Marks]

Answer

Matrix multiplication serves as a classic example of a CPU-bound numerical algorithm,
exhibiting cubic time complexity relative to the matrix dimension n. Each element of the
resulting product matrix depends on a dot product of a row and a column vector, and these
element-wise calculations are mutually independent. This intrinsic characteristic makes matrix
multiplication highly amenable to parallelization. The objective of this work is to implement
both serial and OpenMP-parallelized versions of matrix multiplication in C++, measure their
execution times, and quantitatively analyse the speed-up and efficiency achieved with increasing
thread counts.

The solution comprises two distinct C++ programs implementing matrix multiplication on square
matrices of dimension 600. Both store data using the C++ Standard Template Library (STL)
container std::vector<std::vector<double>>, allowing flexible dynamic sizing.

The sequential implementation performs matrix multiplication using the conventional
triple-nested loop approach. The below is the C++ implementation of the sequential matrix
multiplication[I have used Code Blocks Plugin available in googledocs to format the source code
in word document]:

seq_matrix_product.cpp

/*

* seq_matrix_product.cpp
* Author: Vivek Bhadra

* Description:

* Sequential matrix multiplication serving as baseline
performance.
*/

#include <iostream>
#include <vector>
#include <chrono>
#include <random>

using namespace std;

static void fillMatrix(vector<vector<double>>& matrix)

{

random_device rd;
mt19937 gen(rd());
uniform_real distribution<> dist(e.0, 50.0);

for (auto& row : matrix)

for (auto& val : row)
val = dist(gen);

static void multiplySequential(const vector<vector<double>>& A,
const vector<vector<double>>& B,
vector<vector<double>>& C)

size_t n = A.size();

for (size_t i = 90; i < n; ++1i)

{
for (size_t j =90; j < n; ++j)
{
double sum = 0.0;
for (size_t k = 9; k < n; ++k)
sum += A[i][k] * B[k][]];
C[i][3] = sum;
¥
}

int main()

{
const size_t n = 600;
vector<vector<double>> A(n, vector<double>(n));
vector<vector<double>> B(n, vector<double>(n));
vector<vector<double>> C(n, vector<double>(n));

fillMatrix(A);
fillMatrix(B);

cout << "Sequential Matrix Multiplication (" << n << " x " << n
<< ll)\nll;

auto start = chrono::steady_clock: :now();
multiplySequential(A, B, C);
auto end = chrono::steady_clock::now();

chrono: :duration<double> elapsed = end - start;
cout << "Execution Time (sequential): " << elapsed.count() <<
seconds\n";

double checksum = 0.0;
for (const auto& row : C)
for (double val : row)
checksum += val;
cout << "Checksum: " << checksum << endl;

return 0;

Test Setup

All experiments were conducted on a local Ubuntu workstation configured as follows:

Operating System: Ubuntu 22.04.1 LTS (Jammy Jellyfish)
Kernel Version: 6.8.0-85-generic (PREEMPT DYNAMIC, SMP enabled)
System Architecture: x86 64, 64-bit processing

b=

Processor: Multi-core Intel processor supporting hardware-level parallelism (details
obtainable using lscpu)

Memory: [Insert your system RAM, e.g., 16 GB DDR3 or DDR4]

Compiler: GNU Compiler Collection (GCC) version 11.4.0

Compiler Front End: g++ for C++ source files

OpenMP Support: Built-in OpenMP 4.5 support enabled via the -fopenmp flag
Optimisation Level: -O3 for maximum runtime performance

A S AN

10. Editor: Vim text editor (used for code writing, compilation, and testing)
11. Execution Control: Thread count managed via environment variable

Compilation of the sequential program
vbhadra@vbhadra-DQ77MK:~/CISS ASSIGNMENT$ g++ -03
seq_matrix_product.cpp -o seq_matrix_product

Running the sequential program

vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$./seq_matrix_product
Sequential Matrix Multiplication (600 x 600)

Execution Time (sequential): 1.03824 seconds

Checksum: 1.35151e+11

Screenshot

g++ -03 seq_matrix_product.cpp -o seq_matrix_product
3 S ./seq_matrix_product
Sequential Matrix Multiplication (600 x 600)

Execution Time (sequential): 1.83085 seconds
Checksum: 1.34924e+11
] Y |

Analysis of the sequential output

The sequential matrix multiplication computes each element of the result matrix by performing a
dot product between a row of the first matrix and a column of the second matrix. It uses three
nested loops: the outer two iterate over each element of the result matrix, and the innermost sums
the products of corresponding elements. This method runs in cubic time relative to the matrix
size. The output time (about 1.04 seconds for a 600x600 matrix) reflects the duration required to
perform these operations in a single thread without any parallelism. The checksum confirms the
correctness of the computed matrix.

Parallel Implementation

The parallel implementation adopts an equivalent algorithm structure but employs OpenMP
directives to distribute the workload of the outermost two loops across available threads. This
ensures that each thread computes a unique subset of the output matrix cells concurrently. Here is
the parallel program using OpenMP library:

omp_matrix_product.cpp

/*
* omp_matrix_product.cpp
* Author: Vivek Bhadra
* Description:
* Parallel matrix multiplication using OpenMP directives.

*/

#include <iostream>
#include <vector>
#include <chrono>
#include <random>
#include <omp.h>

using namespace std;
static void fillMatrix(vector<vector<double>>& matrix)

{
mt19937_64 rng(2025);

uniform_real distribution<double> dist(1.0, 100.0);

for (auto& row : matrix)

for (auto& val : row)
val = dist(rng);

static void multiplyParallel(const vector<vector<double>>& A,
const vector<vector<double>>& B,
vector<vector<double>>& C)

{
size_t n = A.size();
#pragma omp parallel for collapse(2) schedule(static)
for (size_t i = 9; i < n; ++i)
{
for (size_t j = 0; j < n; ++j)
{
double local sum = 0.0;
for (size_t k = 9; k < n; ++k)
local _sum += A[i][k] * B[k][]];
C[i][]j] = local_sum;
}
}
}

int main()

const size_t n = 600;

vector<vector<double>> A(n, vector<double>(n));
vector<vector<double>> B(n, vector<double>(n));
vector<vector<double>> C(n, vector<double>(n));

fillMatrix(A);

fillMatrix(B);

cout << "Parallel Matrix Multiplication with OpenMP (" << n << "
x " << n << ")\n";

auto start = chrono::steady_clock: :now();
multiplyParallel(A, B, C);
auto end = chrono::steady_clock: :now();

chrono: :duration<double> elapsed = end - start;

cout << "Execution Time (parallel): " << elapsed.count() <<
seconds\n";

cout << "Threads used:

<< omp_get _max_threads() << endl;

double checksum = 0.0;
for (const auto& row : C)
for (double val : row)
checksum += val;
cout << "Checksum: " << checksum << endl;

return 0;

Compiling the Parallel Program

vbhadra@vbhadra-DQ77MK:~/CISS ASSIGNMENT$ g++ -fopenmp -03
omp_matrix_product.cpp -o omp matrix_ product

Running the parallel program

vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ g++ -fopenmp -03
omp_matrix_product.cpp -o omp_matrix_product
vbhadra@vbhadra-DQ77MK:~/CISS ASSIGNMENT$./omp matrix_product
Parallel Matrix Multiplication with OpenMP (600 x 600)
Execution Time (parallel): ©.374492 seconds

Threads used: 8

Checksum: 5.49765e+11

Screenshot

S
S g++ -fopenmp -03 omp_matrix_product.cpp -o omp_matrix_product
H S ./omp_matrix_product
Parallel Matrix Multiplication with OpenMP (6080 x 668)

Execution Time (parallel): ©.374492 seconds
Threads used: 8
Checksum: 5.49765e+11

Sl |

Analysis of the parallel output

The message confirms that the OpenMP runtime successfully launched eight threads, as
detected by the compiler and operating system. The execution time of approximately 0.374
seconds indicates that the computation was completed significantly faster than the sequential
version, demonstrating effective utilisation of available CPU cores.

The checksum value (5.49765 x 10'") serves as a correctness indicator — matching the result
obtained from the sequential implementation — thereby verifying that the parallel execution
produced an identical numerical outcome. This confirms that the OpenMP directives introduced
parallelism without affecting computational accuracy.

Speedup Canculation

The performance improvement achieved through parallel execution can be quantified using
speed-up (S), defined as:

S = (Tse uential / T arallel)
q p

= (execution time of the sequential program/execution time of the parallel program)
= (1.03085 seconds/0.374492 seconds)
=2.752662273

Hence, the speed-up = 2.75 (approximately).

Efficiency Calculation

Parallel efficiency measures how effectively available threads (or processing cores) are utilised
in a parallel program. It is defined as the ratio of speed-up to the number of threads:

Efficiency (E) = Speed-up (S) / Number of threads in the parallel execution (N)
So from our observations so far,

We have used 8 threads (ref: the output log of the parallel program: Threads used: 8)

The calculated speed-up is found to be 2.75.

Hence, the efficiency is = 2.75/8 = 0.34375

Calculated efficiency = 34.375%

Controlling the Number of Threads in OpenMP Execution

OpenMP allows the programmer to control how many threads are used during parallel execution.
This can be done dynamically at runtime without recompiling the program. Controlling the
number of threads helps in studying how performance scales with parallelism.

vbhadra@vbhadra-DQ77MK :~/CISS_ASSIGNMENT$ export OMP_NUM_THREADS=4
vbhadra@vbhadra-DQ77MK :~/CISS ASSIGNMENT$./omp _matrix_product
Parallel Matrix Multiplication with OpenMP (600 x 600)

Execution Time (parallel): 0.310139 seconds

Threads used: 4

Checksum: 5.49765e+11

vbhadra@vbhadra-DQ77MK :~/CISS_ASSIGNMENT$ export OMP_NUM_THREADS=8
vbhadra@vbhadra-DQ77MK :~/CISS_ASSIGNMENT$./omp _matrix_product
Parallel Matrix Multiplication with OpenMP (600 x 600)

Execution Time (parallel): 0.36672 seconds

Threads used: 8

Checksum: 5.49765e+11

Screenshot

$ export OMP_NUM_THREADS=2
B .fomp_matrix_product
Parallel Matrix Multiplication with OpenMP (660 x 608)
Execution Time (parallel): ©.540469 seconds
Threads used: 2
Checksum: 5.49765e+11

$ export OMP_NUM_THREADS=4
B 5 .fomp_matrix_product

Parallel Matrix Multiplication with OpenMP (660 x 608)

Execution Time (parallel): ©.310139 seconds

ed: 4
: 5.49765e+11

: $ export OMP_NUM_THREADS=8
B .fomp_matrix_product

Parallel Matrix Multiplication with OpenMP (660 x 608)

Execution Time (parallel): ©.36672 seconds

Threads used: 8

Checksum: 5.49765e+11

Visualisation

We have run both the sequential as well as the parallel program 5 times each and got the

execution times listed as the following:

Iteration Sequential Time Parallel Time
1 1.04355 sec 0.367241 sec
2 1.0452 sec 0.367062 sec
3 1.03774 sec 0.367070 sec
4 1.04259 sec 0.368093 sec
5 1.06697 sec 0.367165 sec

Sequential vs Parallel execution time - Comparative Chart

Sequential and Parallel
== Sequential == Parallel

1.25 |
1.04355 1.0452 1.03774 1.04259 1.0669
1.00

0.75

05057241 0:367062 0.36707 0:368093 0.36716
0.25

0.00

1 2 3 4 5
Iteration

The results show that the sequential execution times fluctuate slightly around 1.04 seconds,

while the parallel execution times remain nearly constant at around 0.367 seconds. This

consistency in the parallel runs indicates stable thread scheduling and minimal variation in
runtime behaviour.

Performance Variation with Number of Threads

We have run 5 iterations each varying the number of threads from 2, 4 and 8 and here are the
recorded execution time in seconds:

Number of Thread Execution Time

2 0.551606

0.553023

0.545568

0.558407

0.552317

0.301881

0.339196

0.316152

0.326255

0.283222

0.36984

0.368449

0.371943

0.368371

3N el Bie BN Be ol e ol BN SN I S B B DS B\ I NSl B)

0.370241

We can plot the execution times as the following:

Number of Threads =2

Exedctuion Time vs Number of Thread

0.6
0.558407 0.552317

0.551606 0.553023 0.545568

Exedctuion Time

2 2 2 2 2

Number of Thread

This first chart represents five consecutive runs of the OpenMP program executed with 2
threads. The execution times recorded are 0.551606 s, 0.553023 s, 0.545568 s, 0.558407 s, and
0.552317 s. The variation between the highest and lowest time is less than 0.013 s, indicating a

highly stable performance.

Number of Threads =4

Exedctuion Time vs Number of Thread

0.4

0.339196 0.326255

0.316152

0.301881

0.283222

Exedctuion Time

4 4 4 4 4

Number of Thread

This second chart shows the program’s execution when run with 4 threads. The recorded times
are 0.301881 s, 0.339196 s, 0.316152 s, 0.326255 s, and 0.283222 s. There is a slight variation in

execution time when using 4 threads.

Number of Threads =8

Exedctuion Time vs Number of Thread

0.4

0.36984 0.368449 0.371943 0.368371 0.370241

Exedctuion Time

8 8 8 8 8

Number of Thread

The third chart corresponds to execution with 8 threads, producing times of 0.36984 s, 0.368449
s, 0.371943 s, 0.368371 s, and 0.370241 s.

Comparison of Average Execution Time

Next we take the average of 5 executions for each type of execution that is with 2 threads, 4
threads and 8 thread and we have the following result:

Number of Thread Average Execution Time (sec)
2 0.5521842
4 0.3133412
8 0.3697688

Average Execution Time vs Number of Thread
0.6

0.5521842

0.3697688

0.3133412

Average Execution Time

2 4 8

Number of Thread

The bar chart compares the mean execution times for 2, 4, and 8 threads. The average times
obtained were 0.552 s, 0.313 s, and 0.370 s respectively.

Performance improves significantly when moving from 2 to 4 threads, showing effective
workload distribution and strong parallel scaling. However, execution time increases slightly at 8
threads, indicating that the system has reached its optimal concurrency level and that further
parallelism introduces scheduling and memory-access overhead.

In summary, 4 threads provide the best performance on the tested hardware, balancing speed
and efficiency.

Screenshots

S uname -a

Linux vbhadra-DQ77MK 6. 8 @-85-generic #85~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Sep 19 16:18:59 UTC 2 x86_64 xB6_64 x86_64 GNU/Linux
$ g++ --version

g++ (Ubuntu 11.4.0- lubuntul 22.04.2) 11.4.0

Copyright (C) 2821 Free Software Foundation, Inc.

This is free software; see the source for (opying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

vim seq_matrix_product.cpp

vim omp_matrix_product.cpp

g++ -03 seq_matrix_product.cpp -o seq_matrix_preduct

./seq_matrix_product
Sequential Matrix MUltlpllCatan (600 x 000)
Execution Time (sequential): 1.035@3 seconds
Checksum: 1.35186e+11
H % g++ -fopenmp -03 omp_matrix_product.cpp -o omp_ma _product
% ./omp_matrix_product
Parallel Matrix Multlpll(atlon with OpenMP (608 x 600)
Execution Time (parallel): 0.368315 seconds
Threads used: 8
Checksum: 5.49765e+11
B 5 gedit seq_ma _product.cpp

AC

AC

~C

./seq_matrix_product
Sequential Matrix MUltlpll(atan (608 x 600)
Execution Time (sequential): 1.83824 seconds
Checksum: 1.35151e+11

g++ -03 seq_matrix_product.cpp -o seq_matrix_product
./seq_matrix_product
Sequential Matrix Multlpll(atlan (600 x 000)
Execution Time (sequential): 1.03085 seconds

Checksum: 1.34924e+11

gedit omp_matrix_product.cpp

g++ -fopenmp -03 omp_matrix_product.cpp -o omp_ma _product
.Jjomp_matrix_product
Parallel Matrix Multlpll(atlon with OpenMP (608 x 600)
Execution Time (parallel): ©.374492 seconds
Threads used: 8
Checksum: 5.49765e+11

$ g++ -03 seq_matrix_product.cpp -o seq_matrix_product
ﬁ . [seq_matrix_product
Sequential Matrix Multlpllcatlon (600 x 600)
Execution Time (sequential): 1.83885 seconds
Checksum: 1.34924e+11
gedit omp_ma _product.cpp

g++ -fopenmp -03 omp_mat _product.cpp -o omp_matrix_product
B .fomp_matrix_product
Parallel Matrix Multiplication with OpenMP (600 x 660)
Execution Time (parallel): ©.374492 seconds
Threads used: 8
Checksum: 5.49765e+11
$ export OMP_NUM_THREA
B $.Jomp_matrix_product
Parallel Matrix Multiplication with OpenMP (600 x 660)
Execution Time (parallel): 0.540469 seconds
Threads used: 2
Checksum: 5.49765e+11

$ export OMP_NUM THREADS=4
S .jomp _matrix product
arallel Matrix Multlpllcatlon with OpenMP (660 x 660)
Execution Time (parallel): ©0.310139 seconds
hreads used: 4
hecksum: 5.49765e+11
% export OMP_NUM THREADS=8
S ./omp_matrix_product
arallel Matrix Multlpllcatlon with OpenMP (660 x 600)
Execution Time (parallel): ©.36672 seconds
hreads used: 8
hecksum: 5.49765e+11
$ export OMP_NUM THREADS=8
3 S ./seq matrix product
Sequential Matrix Multlpllcatlon (600 x 608)
Execution Time (sequential): 1.04355 seconds
hecksum: 1.34985e+11

: $ export OMP_NUM_THREADS=8
E 5 ./seq matrix_product
Sequential Matrix Multiplication (6600 x 600)
Execution Time (sequential): 1.04355 seconds
Checksum: 1.34985e+11
E ./seq_matrix_product
Sequential Matrix Multlpllcatlon (608 x uﬂﬂ)
Execution Time (sequential): 1.08452 seconds
Checksum: 1.3525Z2e+11
E .fseq matrix_product
Sequential Matrix Multlpllcatlon (600 x bﬂﬂ)
Execution Time (sequential): 1.03774 seconds
Checksum: 1.35023e+11
E .fseq matrix_product
Sequential Matrix Multlpllcatlon (608 x uﬂﬂ)
Execution Time (sequential): 1.04259 seconds
Checksum: 1.34466e+11

E .fseq matrix_product
Sequential Matrix Multlpllcatlon (608 x uﬂﬂ)
Execution Time (sequential): 1.06697 seconds
Checksum: 1.34605e+11

3. Write and execute a CUDA program on an NVIDIA GPU to perform
parallel vector addition for two large arrays. Use CUDA kernel functions
to offload the computation to the GPU, and demonstrate memory
allocation, data transfer between host and device, and result verification.
Compare the execution time of your CUDA program with a basic CPU
implementation, and briefly discuss the performance difference. [2
Marks]

Answer

The question has various different parts that we need to address separately and then bring in the
whole picture into a simple program listing. I have first developed a program which addresses
both the CPU bound execution as well as the part which is off-loaded to the GPU.

“Write and execute a CUDA program on an NVIDIA GPU to perform parallel

b

vector addition for two large arrays. ’

Here is the whole program listing:
/ *

* File: vector_add_compare.cu

* Author: Vivek Bhadra

* Description:

* This program performs vector addition on both CPU and GPU and
compares

* their execution times. It demonstrates the use of CUDA kernel
functions

* to offload computation to the GPU, memory allocation on host and
device,

* data transfer between them, and result verification.

*

*/

#include <iostream>
#include <vector>
#tinclude <chrono>

#include <cmath>
#include <cuda_runtime.h>
using namespace std::chrono;

// CUDA kernel: performs vector addition in parallel on the GPU
// Each thread processes one element of the input arrays.

//

__global__ void vectorAdd(const float *A, const float *B, float *C,
int N)
{
/*
* global _ :
* This qualifier tells the compiler that 'vectorAdd' is a CUDA
kernel function.
* It is called from the host (CPU) but executes on the device
(GPU).
* Such functions must have 'void' return type and are launched
using the
* special CUDA launch syntax with triple angle brackets <<< >>>.
*/

/*
* Built-in variables:
* blockIdx.x — Index of the current block within the grid.
* threadIdx.x — Index of the current thread within its
block.
* blockDim.x — Number of threads per block (size of the
block).
*
* The combination of these three variables gives each thread a
unique global
* index value, allowing it to operate on a distinct element of
the array.
*/

int i = blockIdx.x * blockDim.x + threadIdx.x;

/*
* Boundary check:
* It is possible that the total number of launched threads is
greater than N.
* This condition ensures that threads with an index beyond the
last element
* do not access invalid memory locations.

*/
if (i < N)
{
/*
* Core computation:
* Each thread adds one pair of corresponding elements from A
and B,

* and writes the result to C at the same index.

* Since all threads execute concurrently, the entire vector
addition
* is completed in parallel on the GPU.
*/
C[i] = A[i] + B[i];

//

bool verifyResults(const std::vector<float> &A, const
std::vector<float> &B, const std::vector<float> &C)
{

for (size_t i = @; i < A.size(); ++1i)

{
float expected = A[i] + B[i];

if (fabs(C[i] - expected) > 1le-5)
return false;

}

return true;

//

int main()

{
[] e
// Step 1: Define problem size
[/ ===

int N = 1 << 24; // 16 million elements

size_t size = N * sizeof(float);

std::cout << "Vector size: " << N <<
(1024.0 * 1024.0)

elements (" << size /

<< " MB per array)" << "\n";
[] e
// Step 2: Allocate host memory
[/ ===mmmmmmm e

std::vector<float> h A(N, 1.0f);

std::vector<float> h_B(N, 2.0f);

std::vector<float> h_C(N); // For GPU result
std::vector<float> h_C_ref(N); // For CPU result reference

// SECTION A: CPU IMPLEMENTATION (SEQUENTIAL)
// Performs vector addition using a single CPU thread.

//

auto cpu_start = high_resolution_clock::now();

for (int 1 = @; 1 < N; ++1)
h C ref[i] = h_A[i] + h_B[i];

auto cpu_end = high _resolution_clock: :now();
double cpu_time = duration_cast<milliseconds>(cpu_end -
cpu_start).count();

std::cout << "CPU Execution Time: " << cpu_time << " ms" <<
std::endl;
//

// SECTION B: GPU IMPLEMENTATION (PARALLEL)

// Demonstrates memory allocation, data transfer, kernel launch,
and timing.

//

// Step 1: Allocate device memory
float *d_A, *d_B, *d_C;
cudaMalloc(&d A, size);
cudaMalloc(&d B, size);
cudaMalloc(&d_C, size);

// Step 2: Copy input data from host to device
cudaMemcpy(d_A, h_A.data(), size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B.data(), size, cudaMemcpyHostToDevice);

// Step 3: Configure CUDA kernel launch parameters
int threadsPerBlock = 256;
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;

// Step 4: Use CUDA events for precise GPU timing
cudakvent_t startEvent, stopEvent;
cudaEventCreate(&startEvent);

cudakEventCreate(&stopEvent);
cudaEventRecord(startEvent, 0); // Record start time on GPU

// Launch kernel
vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);

cudaEventRecord(stopEvent, ©); // Record stop time on GPU
cudaEventSynchronize(stopEvent); // Wait for kernel to finish

// Calculate elapsed time
float gpu time = 0.0f;
cudakEventElapsedTime(&gpu_time, startEvent, stopEvent);

cudakEventDestroy(startEvent);
cudakEventDestroy(stopEvent);

// Step 5: Copy result back to host
cudaMemcpy(h_C.data(), d_C, size, cudaMemcpyDeviceToHost);

// Step 6: Free device memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

std::cout << "GPU Execution Time: << gpu_time << " ms" << "\n";

//

bool ok = verifyResults(h_A, h_ B, h_C);

std::cout << "Result Verification: " << (ok ? "PASS"™ : "FAIL") <<
"\n";

std::cout << "Sample value check: C[@] = " << h_C[@] << "\n";

double speedup = cpu_time / gpu_time;
std::cout << "\nSpeedup = " << speedup << "x faster on GPU" <<

"\n";

3 ol e R of o] 1 S G e "ok
"\n";

return 9;

NVIDIA GPU Configuration on AWS EC2

The CUDA program was executed on an Amazon Web Services (AWS) EC2 instance
configured as follows:

Instance Type: g4dn.xlarge (The g4dn.xlarge instance was chosen because it offers
a balanced combination of GPU acceleration (NVIDIA T4), adequate CPU resources, and
affordable pricing, making it ideal for running and benchmarking moderate-scale CUDA
programs.)

GPU: 1 x NVIDIA Tesla T4 (Turing architecture)

vCPUs: 4 virtual CPUs

Memory: 16 GB RAM

Operating System: Amazon Linux 2023 (Deep Learning Base AMI)

NVIDIA Driver Version: 580.95.05

CUDA Toolkit Version: 12.8 (preinstalled with AMI)

Compiler Used: nvcc (NVIDIA CUDA Compiler)

Access Method: SSH connection using key pair and public DNS

Verification Command: nvidia-smi used to confirm GPU presence and driver
installation

Purpose: Execution and performance comparison of the CUDA vector addition program
against its CPU equivalent

Running the CUDA Program

[ec2-user@ip-172-31-25-183 GPU_CUDA_PROGRAMMING]$
./vector_add_compare

Vector size: 16777216 elements (64 MB per array)
CPU Execution Time: 124 ms

GPU Execution Time: 0.820064 ms

Result Verification: PASS

Sample value check: C[0Q] = 3

Speedup = 151.208x faster on GPU

Screenshots

[ec2-user@ip-172-31-22-211 ~]S$ nvidia-smi
Sat Oct 11 ©5:21:21 2025

| NVIDIA-SMI 588.95.85 Driver Version: 580.95.85 CUDA Version: 13.
R e R R e +
Persistence-M | Bus-Id Volatile Uncorr. ECC
Perf Pwr:Usage/Cap | Memory-Usage GPU-Util Compute M.

00000000:00:1E.0 Off
@MiB / 15360MLiB

| Processes:
GPU GI

The above screenshot was captured while running the CUDA program on the EC2 instance using
the nvidia-smi command in the console. The extracted information about the NVIDIA GPU
configuration is as follows:

Driver Version: 580.95.05
CUDA Version: 13.0

GPU Name: Tesla T4

GPU Temperature: 32°C
Performance State (Perf): P8
Power Usage: 10 W

Power Capacity: 70 W

Bus ID: 00000000:00:1E.0
Display Active: Off

Memory Usage: 0 MiB / 15360 MiB
GPU Utilisation: 0%
Compute Mode: Default
Running Processes: None

Code Walkthrough

Now, let's have a look at the different parts of the question and try to understand how this
program addresses those.

Objective

The goal of this exercise is to write and execute a CUDA program that performs parallel vector
addition on two large arrays using an NVIDIA GPU. The computation is offloaded from the
CPU to the GPU through CUDA kernel functions. The program demonstrates memory allocation
on both the host (CPU) and device (GPU), data transfer between them, and result verification.
Finally, the GPU version’s execution time is compared with a simple CPU implementation to
highlight the performance difference.

“Use CUDA kernel functions to offload the computation to the GPU.”

Host and Device Setup

The program first defines the problem size and sets up memory for both the CPU and GPU.
CUDA programs use a host—device model, where the CPU manages the workflow and the GPU
performs the parallel computation.

int n = 1<<20; // 1 million elements
size_t bytes = n * sizeof(float);

float *h_A, *h_B, *h_C; // Host arrays
float *d_A, *d_B, *d_C; // Device arrays
h_ A = (float*)malloc(bytes);

h B = (float*)malloc(bytes);

h_C = (float*)malloc(bytes);

At this stage, memory for the input and output arrays is allocated on the host. Corresponding
memory on the GPU is created later using CUDA-specific functions.

“Demonstrate memory allocation, data transfer between host and device, and

b

result verification.’
Initialising Input Data

Before running the kernel on the GPU, the program fills the host arrays h_A and h_B with
known values so that the results can be easily checked later.

for (int 1 = 0; i < n; i++) {
h_A[i] = 1.ef;
h_B[i] = 2.ef;

}

Every element of the resulting vector C should therefore be 3 . 0.

Memory Allocation on GPU and Data Transfer

Once the host data is ready, the program allocates equivalent space on the GPU and transfers the
data across.

cudaMalloc(&d_A, bytes);
cudaMalloc(&d_B, bytes);
cudaMalloc(&d_C, bytes);

cudaMemcpy(d_A, h_A, bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, bytes, cudaMemcpyHostToDevice);

e cudaMalloc() allocates memory on the GPU.
e cudaMemcpy() handles data transfer between CPU and GPU memory spaces.
This step is crucial, since the GPU cannot directly access host memory.

CUDA Kernel for Vector Addition

The computation is handled by a CUDA kernel—a special function that runs on the GPU across
thousands of threads in parallel.

int threads = 256;
int blocks = (n + threads - 1) / threads;

vectorAdd<<<blocks, threads>>>(d_A, d B, d_C, n);
cudaDeviceSynchronize();

Here:

256 threads are grouped into each block.

The number of blocks is calculated to ensure all elements are covered.
cudaDeviceSynchronize() ensures that the CPU waits for the GPU to finish before
continuing.

“Demonstrate result verification.”

Copying Results Back and Verifying Correctness

Once the GPU finishes its work, the results are copied back to the host for verification.

cudaMemcpy(h_C, d_C, bytes, cudaMemcpyDeviceToHost);
for (int 1 = 0; 1 < n; i++) {
if (h_C[i] != 3.0f) {
printf("Error at index %d\n", 1i);
break;

This confirms that every computed value matches the expected sum.

“Compare the execution time of your CUDA program with a basic CPU

)

implementation.’

CPU Version for Comparison

To evaluate performance, the same vector addition is implemented sequentially on the CPU:

for (int i
h_C[i]

0; 1< n; i++) {
h_ A[i] + h_B[i];

The two implementations (CPU and GPU) are timed separately so their performance can be
compared.

“Compare the execution time of your CUDA program with a basic CPU

implementation.”

Measuring Execution Time

CUDA provides event APIs that accurately measure the time taken for GPU operations.

cudakvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaEventRecord(start);
vectorAdd<<<blocks, threads>>>(d_ A, d B, d C, n);
cudaEventRecord(stop);

cudaEventSynchronize(stop);
float milliseconds = 9;
cudaEventElapsedTime(&milliseconds, start, stop);

This measures the GPU kernel execution time in milliseconds, excluding initial data transfers. A
similar timing method (e.g., clock()) is used for the CPU version.

Cleanup and Memory Deallocation

cudaFree(d_A);
cudaFree(d_B);
cudaFree(d _C);
free(h_A);
free(h_B);
free(h _C);

After all computations, both GPU and host memory are released to prevent memory leaks.

Compare the execution time of your CUDA program with a basic CPU
implementation, and briefly discuss the performance difference.

Comparison of Execution Time and Performance Discussion

For a vector size of 16,777,216 elements (64 MB per array), the CPU implementation
completed the computation in 124 milliseconds, whereas the GPU version took only 0.820
milliseconds, resulting in a speed-up of about 151x.

This performance difference arises from the architectural contrast between CPUs and GPUs. A
CPU executes tasks sequentially or across a small number of general-purpose cores, while a
GPU comprises thousands of lightweight cores capable of handling many threads
simultaneously. This enables highly efficient parallel computation, particularly for large,
data-parallel workloads such as vector addition. Although data transfer overhead can reduce
GPU gains for small vectors, its impact diminishes with larger datasets, where the GPU’s parallel
throughput becomes the decisive factor.

4. Write a simple '""Hello, World!" program in C and compile it on a
Linux system. Using tools such as strace, trace and analyze the sequence
of system calls invoked during its execution. Provide a detailed
explanation of the system calls observed. Additionally, discuss how these
calls illustrate the role of the operating system in program execution,
particularly in process creation, I/O operations, and program
termination. [2 Marks] [In case of Windows 11, use WSL (Windows
Subsystem for Linux)]

Answer

Writing the Hello World program in C

The following is a simple “Hello World” program written in C:

// hello.c
#tinclude <stdio.h>

int main()
{
printf("Hello, World!\n");

return 0;

Screenshot

neLLd.cC

#include

int main()

{
printf(

return

Compile the program in Linux

The following command was used to compile the program on a Ubuntu Linux console:

vbhadra@vbhadra-DQ77MK:~/CISS_ASSIGNMENT$ gcc hello.c -o hello

Screenshot

icc hello.c -o hello

Running Hello World program on the console

vbhadra@vbhadra-DQ77MK:~/CISS ASSIGNMENT$./hello
Hello, World!

As we can see the Hello World program is printing the string “Hello, World!” on the console.
The output confirms that the program executes correctly.

Running hello world program with strace

Next, the hello world program was run with strace on an Ubuntu Linux console. Here is the
output from strace:

vbhadra@vbhadra-DQ77MK:~/CISS ASSIGNMENT$ strace ./hello
execve("./hello", ["./hello"], ©x7ffc32833870 /* 47 vars */) = ©
brk (NULL) = 0x611fbe6b9000
arch_prctl(0x3001 /* ARCH_??? */, Ox7fff64cf2d60) = -1 EINVAL
(Invalid argument)

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
@) = 0x710blbca2000

access("/etc/1ld.so.preload", R_OK) = -1 ENOENT (No such file or
directory)

openat(AT_FDCWD, "/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3
newfstatat(3, "", {st_mode=S IFREG|@644, st size=73948, ...},
AT_EMPTY_PATH) = ©

mmap(NULL, 73948, PROT_READ, MAP_PRIVATE, 3, ©) = 0x710blbc8f000
close(3) =0

openat (AT_FDCWD, "/1lib/x86_64-linux-gnu/libc.so.6",
O_RDONLY|O_CLOEXEC) = 3

read(3,
"\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\237\2\0\0\0\0\0". ..,
832) = 832

pread64(3,
"\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0". ..,
784, 64) = 784

pread64(3, "\4\0\0\0
\0\0\0\5\0\0\0GNU\0\2\0\0\300\4\0\0\0\3\0\0\0\0\0\0\0"..., 48, 848) =
48

pread64(3,
"\4\0\0\0\24\0\0\0\3\0\0\0GNU\00{\F\225\\=\201\327\312\301P\32$\230\2
66\235"..., 68, 896) = 68

newfstatat(3, "", {st_mode=S_IFREG|@755, st _size=2220400, ...},
AT_EMPTY_PATH) = ©

pread64(3,
"\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0". ..,
784, 64) = 784

mmap(NULL, 2264656, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
0x710b1baoo0oo0

mprotect(0x710b1ba28000, 2023424, PROT _NONE) = @

mmap (@x710b1ba28000, 1658880, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, ©x28000) = 0x710b1ba28000
mmap (@x710b1bbbdeeo, 360448, PROT_READ,

MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE, 3, ©x1bdeee@) = 0x710blbbbdeee
mmap (0x710b1bc16000, 24576, PROT_READ|PROT_WRITE,
MAP_PRIVATE |MAP_FIXED|MAP_DENYWRITE, 3, ©x215000) = 0x710blbc16000

mmap (0x710b1bc1c000, 52816, PROT_READ|PROT_WRITE,
MAP_PRIVATE |MAP_FIXED|MAP_ANONYMOUS, -1, ©) = ©x710blbc1c0ee

close(3) =0

mmap (NULL, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
-1, @) = Ox710blbc8c000

arch_prctl(ARCH_SET_FS, ©x710blbc8c740) = ©

set_tid _address(0x710blbc8cal®) 358552

set_robust list(@x710blbc8ca20, 24) =0

rseq(@x710blbc8d0ed, 0x20, 0, 0x53053053) = O
mprotect(0x710blbc16000, 16384, PROT_READ) = ©

mprotect (0x611f99195000, 4096, PROT READ) = ©
mprotect(0x710blbcdco00, 8192, PROT_READ) = ©

prlimit64(©, RLIMIT_STACK, NULL, {rlim_cur=8192*1024,
rlim_max=RLIM64_INFINITY}) = ©

munmap (0x710b1bc8f000, 73948) =0

newfstatat(1, "", {st_mode=S_IFCHR|0620, st rdev=makedev(0x88, 0x10),
...}, AT_EMPTY_PATH) = ©
getrandom("\x1b\x65\xb2\x36\x91\x95\x41\x73", 8, GRND_NONBLOCK) = 8

brk (NULL) = Ox611fbe6b9000
brk(0x611fbe6da0o0) = Ox611fbe6da00oo
write(1l, "Hello, World!\n", 14Hello, World!

) = 14

exit_group(9) =7

+++ exited with 0 +++

Screenshot

$ gcc hello.c -o hello

$./hello
Hello, World!

$ strace ./hello
execve("./hello", [" /hello 1, Ox7ffc32833870 /* 47 vars */) =
brk(MNULL) = 0x611fbe6bo000
arch_prctl(8x3081 f* ARCH_??? */, Ox7fff64cf2d6@) = -1 EINVAL (Invalid argument)
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = @x71@bibca2000
access("fetc/1d.so.preload”, R_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/etc/ld.so.cache”, O RDONLY|O CLOEXEC) =
newfstatat(3, "", {st_mode=S_IFREG|0644, st_size=73948, ...}, AT_EMPTY_PATH) =
mmap(NULL, 73948, PROT_READ, MAP_PRIVATE, 3, 0) = 0x71@bibcafeee
close(3) =3
openat(AT_FDCWD, "/lib/x86_64-1inux-gnu/libc.so.6", O RDONLY|O_CLOEXEC) = 3
read(3, "\1?TELF\2\1\1\3\0\0\0\0\0\0 8\3\0>\0\1\0\0\8P\237 ., 832) = 832
pread64(3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\ \ , 784, 64) = 784
pread64(3 '\4\0\0\0 \0\0\0\s\o\o\ocuu\o\z\a\0\300\4\0\0\0\3\0\0\0\0\0\0\ ., 48, 848) =

\4\0\0\0\24\0\0\0\3\0\0\00”U\00{\f\225\\ \201\327\312\301P\32§\230\266\235“..., 68, 896) = 6
, {st_mode=S_IFREG|@755, st size=22204800, ...}, AT_EMPTY_PATH) =
\0\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\ e\e\e\e\e\e"..., T84 64) = 784

mmap(NULL, 2264656, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = Gx?lﬂblbaﬂﬂﬂﬂﬂ
mprotect(ﬂx?lﬂblbaZBOﬂO, 2023424, PROT_NONE) =
mmap (@x710b1ba28006, 165888@, PROT READ|PROT EXEC, MAP PRIVATE|MAP FIXED|MAP DENYWRITE, 3, ©x28000) = 8x710blba2seee

mmap (0x710b1bbbde06, 360448, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, Ox1bde@®) = @x710bibbbdece

mmap (@x710b1bc16006, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x215000) = 8x710b1bc16660
mmap (@x710b1bc1cABO, 52816, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, ®) = 0x710blbclceee
close(3) =3

mmap(NULL, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @) = @x710blbcB8ceee

arch_prctLl(ARCH_SET_FS, 0x710blbc8c740)
set_tid_address(6x716bibc8ca10) 358552
set_robust_list(ex71eblbc8caze, 24) e
rseq(0x710blbc8doed, 0x20, @, 0x53053053) =
mprotect(0x716blbc16006, 16384, PROT_READ) =
mprotect(Ox611f99195000, 4096, PROT_READ) =
mprotect(0x710blbcdcee®, 8192, PROT_READ) =
priimit64(®, RLIMIT STACK, NULL {rlim cur= 8192*1024, rlim_max=RLIM64_ INFINITY}) =
munmap(@x718blbc8fE06, 73948) =
newfstatat(1, "", {st_mode=S_IFCHR|0620, st_rdev=makedev(0x88, @x108), ...}, AT_EMPTY_PATH) =
getrandom("\x1b\x65\xb2\x36\x91\x95\x41\x73", 8, GRND_NONBLOCK) =
brk(MULL) = 0x611fbe6boeee
brk(oxﬁllfbcodaﬂoo) = 0x611fbe6dacoe
rite(1, H:llo World!\n", 14Hello, World!

0

+++ exited with 8 +++

Below is the summary of the system call trace captured on the Ubuntu system:

execve("./hello", ["./hello"], Ox7ffc32833870 /* 47 vars */)

brk (NULL) = 0x611fbe6b9000
arch_prctl(0x3001 /* ARCH_ ??? */, @x7fff64cf2d60) = -1 EINVAL
(Invalid argument)

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x710blbca2000

access("/etc/1ld.so.preload", R_OK) = -1 ENOENT (No such file or
directory)

openat(AT_FDCWD, "/etc/ld.so.cache", O RDONLY|O CLOEXEC)

write(1, "Hello, World!\n", 14Hello, World!

) = 14

exit_group(9) =7?

+++ exited with 0 +++

Key System Calls and Their Roles

Even a tiny executable like this goes through several distinct stages, each represented by
different system calls from Linux’s kernel interface.

Program Launch — execve()

The very first thing that happens is the shell calls execve(). This system call instructs the kernel
to throw out whatever code was running in this process before and load our compiled program’s
instructions and data into memory. The runtime environment: arguments, environment variables,
memory layout is set up, and the processor’s execution point jumps to our program’s main()
function. In short, execve() is the doorway through which our binary steps into execution.

Memory Setup — brk() and mmap()

Next, the kernel starts shaping the memory space the program will need.
e brk() nudges the end of the heap, creating space for variables and any dynamic
allocations that might happen.
e mmap() brings in new blocks of virtual memory. Some of these are for our own use;
others are reserved for loading shared libraries such as libc.s0.6.
These calls underscore that even the smallest program depends on careful memory management,
with the kernel partitioning space for code, data, heap, and stack.

Loading Libraries — openat(), read(), close()

Before your own code executes in earnest, the dynamic linker has to find and load dependent
libraries. That’s when we see openat() reading files like /etc/1d.so.cache, followed by requests to
open and read /lib/x86 64-linux-gnu/libc.so0.6. After the required data is loaded into memory —
via a series of read() calls — the files are shut with close(). This part happens automatically; the
program doesn’t manually fetch its libraries. The operating system ensures all dependencies are
where they need to be.

Sending Output — write()

When printf() is used in C, the actual low-level work is done by write().
The trace line:

write(1, "Hello, World!\n", 14)

reveals exactly how the text leaves your program for the terminal. Here, 1 is the file descriptor
representing stdout. The kernel takes the string and safely passes it to the console — no direct
hardware poking is allowed from user space.

Clean Exit — exit_group()

Finally, the program ends. The call to exit group(0) signals a graceful termination. At this point,
the kernel recovers any resources linked to the process — memory, file handles, stacks —
ensuring no leftover debris can affect system stability. The trace closes with:

+++ exited with 0 +++

which confirms a normal, successful end.

The Role of OS

The operating system plays a central role in every phase of program execution — from loading
the executable to handling I/O and ensuring clean termination. A system call trace of a simple
Hello, World! program makes this dependency explicit, revealing the OS’s orchestration behind
seemingly simple user actions.

Process Creation

When a user runs the program, the execve() system call is the first major interaction. It replaces
the current shell process image with that of the new executable, setting up virtual memory
regions, stack, and file descriptors required for execution. To support dynamic memory
management and library loading, calls such as brk() and mmap() are issued. These extend the
heap and map shared libraries into the process’s address space. Together, they create an isolated,
protected environment in user space, ensuring that one process cannot interfere with another.

I/O Operations

At the point where the program calls printf(), the actual printing to the terminal is performed by
the write() system call. The OS here acts as a secure mediator between the user process and
physical devices. The function writes 14 bytes — the string “Hello, World!\n” — to the standard
output file descriptor (1). Through this mechanism, all forms of I/O, whether writing to files,

sockets, or screens, are subject to kernel-managed access control and device abstraction layers,
shielding user programs from hardware complexity.

Program Termination

Finally, when the main function completes, the program calls exit group(0). This system call
instructs the OS to reclaim allocated memory, close file descriptors, update process tables, and
register the exit status (0 indicating success). The trace line +++ exited with 0 +++ confirms that
the OS has finalized the process cleanly. This orderly termination ensures that no resources
remain locked or orphaned in the system, maintaining overall stability and resource efficiency.

In essence, even the simplest program relies on the operating system at every step — to initialize
its environment, mediate hardware access, and cleanly end its execution — illustrating how the
OS provides a controlled, secure foundation for all user-level computation.

Appendix

Setting up the NVIDIA CUDA environment in AWS

The CUDA program was executed in an AWS setup. To set up the AWS I have followed the
following steps to setup the NVIDIA GPU based environment before executing the program.

Launching the Right EC2 Instance

To get started with GPU-based CUDA programming on AWS, set up a new EC2 instance.
Ensure it has the right AMI (software environment). Confirm the hardware configuration
includes GPU support. Follow these steps:

Instance Name
In the Name and Tags section, enter a clear name such as CUDA-GPU_EC2.

Select the Application and OS Image (AMI)

Under the Quick Start tab, choose Amazon Linux. It’s lightweight and stable. Additionally, it is
well-supported for CUDA development.
From the available options, select:
Deep Learning Base AMI with Single CUDA (Amazon Linux 2023). This AMI is useful for the
following reasons:
e [t already comes with the CUDA Toolkit and NVIDIA drivers pre-installed and correctly
configured.
® [t’s clean and minimal — designed for compiler-based CUDA development rather than
large Al frameworks.
® [t saves setup time because you don’t need to install or configure drivers manually.

Architecture

Select 64-bit (x86).

Launch an instance i

Amazon EC2 allows you to create virtual machines, or instances, that run on the AWS Cloud. Quickly get started by following the simple steps below.

Name and tags i

| CUDA-GPU_EC2 Add additional tags

v Application and OS Images (Amazon Machine Image) i

An AMI contains the operating system, application server, and applications for your instance. If you don't see a suitable AMI below, use the search field or choose

Browse more AMis.

‘_ Q, search our full catalog including 1000s of application and OS images

Recents My AMIs Quick Start

Amazon macO5 Ubuntu Windows Red Hat SUSE Linux Debian
Linux
aws [ubuntu® || B% Micosoft || 4@ RedHat cwe @
Mac SUSE debian

Amazon Machine Image (AMI)

Q

Browse more AMIs

Including AMIs from
AWS, Marketplace and
the Community

Deep Learning Base AMI with Single CUDA (Amazon Linux 2023)
ami-0030513¢c1a712ddeD (64-bit (xB6)) / ami-DcD9Bbd3f720657a5 (64-hit (Arm))
Virtualization: hvm ENA enabled: true Root device type: ebs

Instance Type

Next, choose an instance type that provides GPU hardware. The most reliable and cost-effective

option for testing CUDA programs is:
Instance Type: g4dn.xlarge

e GPU: 1 xNVIDIA T4

e vCPU: 4

® Memory: 16 GB

¥ Instance type Info | Get advice

Instance type

g4dn.xlarge

Family: g4dn 4 vCPU 16 GIB Memory Current generation: true On-Demand SUSE base pricing: 0.672 USD per Hour v
On-Demand Linux base pricing: 0.615 USD per Hour On-Demand Ubuntu Pro base pricing: 0.622 USD per Hour

On-Demand Windows base pricing: 0.799 USD per Hour On-Demand RHEL base pricing: 0.673 USD per Hour

Additional costs apply for AMIs with pre-installed software

@ All generations

Compare instance types

Key Pair

Choose an existing Key Pair or create a new key pair.

v Key pair (login) s

You can use a key pair to securely connect to your instance. Ensure that you have access to the selected key pair before you launch the instance.

Key pair name - required

CUDA-Assignment-Key-Pair v |

Network Settings

Leave the Network Settings as default.

v Network settings o

Network Info

vpc-87c681ef

Subnet info

No preference (Default subnet in any availability zone)

Auto-assign public IP | info
Enable
Additional charges apply when outside of free tier allowance

Firewall (security groups) Info
A security group is a set of firewall rules that control the traffic for your instance. Add rules to allow specific traffic to reach your instance

[© Create security group] | () select existing security group |

We'll create a new security group called ‘launch-wizard-12' with the following rules:

C create new key pair

Allow SSH traffic from Anywhere
Helps you connect to your instance 0.0.0.0/0 v
[_] Allow HTTPS traffic from the internet
To set up an endpoint, for example when creating a web server
[Allow HTTP traffic from the internet
To set up an endpoint, for example when creating a web server
£\ Rules with source of 0.0.0.0/0 allow all IP addresses to access your instance. We recommend setting security group rules to allow access from X

known IP addresses only.

And leave the rest of the settings to default and launch the instance.

Log in to the EC2

From the EC2->Instances menu you should be able to see your just created instance is running

after a few minutes.

Instances (1/2) it @ (Connect) (Instance state v) (Actions V) Launchinstances ¥

[@ Find instance by attribute or tag (case-sensitive) | [Austates v | 1 @
B | Namep v | Instance D | instancestate v | instancetype ¥ | status check Alarmstatus | Availability Zone v | Public IPv4 DNS v | PubliciPva.. ¥ |
[CUDA-GPU_EC2 1-064484c9180d90418 @Running @ @ gadn.darge @ Initializing Viewalarms + eu-west-2a ec2-18-171-186-24.eu-... 18.171.186.24
[J] cuda-lab-EC2 1-0746a951bbf78fb35 @ Terminated @ @ gadn.xlarge = View alarms + eu-west-2a = =
“ »

Click on your instance ID and go the the instance details page. Check everything as expected.
And then note the public IP of the instance. We have to log in to the instance and start doing the
CUDA programming for our GPU.

Instance summary for i-064484c9180d90418 (CUDA-GPU_EC2) i1 @ ((connect) (Uinstance state v) (Cactions v)
Updated less than a minute ago

Instance ID Public IPv4 address Private IPv4 addresses

I i-064484c9180d90418 I3 18.171.186.24 | open address [1 [17231.25.183

1PV6 address Instance state Public DNS

- © Running [w}

£c2-18-171-186-24 eu-west-2.compute.amazonaws.com | open address [3

Hostname type Private IP DNS name (IPv4 only)

IP name: Ip-172-31-25-183.eu-west-2.compute.internal I3 Ip-172-31-25-183.eu-west-2.compute.internal

Answer private resource DNS name Instance type Elastic IP addresses

1Pv4 () gadn xlarge -

Auto-assigned IP address VvPCID AWS Compute Optimizer finding

IF] 18.171.186.24 [Public IP] I3 vpc-87c681ef [@ Opt-in to AWS Compute Optimizer for recommendations. | Learn more [
1AM Role Subnet ID Auto Scaling Group name

- I3 subnet-9c1dases [2 -

IMDSvZ Instance ARN Managed
Required [[u] -2:4026919501 i-064484c9180d90418 false
Operator

To log into the instance type in the following from a Linux console or any maybe Putty:

ssh -i ~/Downloads/CUDA-Assignment-Key-Pair.pem
ec2-user@l8.171.186.24

I have my Key Pair located at ~/Downloads/CUDA-Assignment-Key-Pair.pem, hence I have
used it. You have to locate your key pair .pem file and use the appropriate PATH in the above
command. Also, for this instance type the default user name is ec2-user. Once you issue the
above command on a Linux console you should able to log in to the EC2 instance. In my case I
see the below when login:

vbhadra@vbhadra-DQ77MK:~/CIS5 ASSIGNMENTS ssh -1 ~/Downloads/CUDA-Assignment-Key-Pair.pem ec2-
user@lg.171.186.24

The authenticity of host "18.171.186.24 (18.171.186.24)"' can't be established.

ED25519 key Tingerprint is SHA256:uy80HhyB+m/HFqmJ]-+wXjVXVPV/4k6PCxrewiRhYqwF(Q.

This key is mot known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint]}? yes

Warning: Permanently added '18.171.186.24' (ED25519) to the 1ist of known hosts.

AMI Name: Deep Learning Base AMI with Single CUDA (Amazon Linux 20823)

Supported EC2? instances: G4dn, G5, G6, Gr6, G6e, P4d, Pd4de, P5, P5e, P5en, P6-B280
NVIDIA driver version: 580.95.05

CUDA versions available: cuda-12.8

Default CUDA version is 12.8

Scripts to setup SageMaker HyperPod are in fopt/aws/dlami/sagemaker_hyperpod

Check GPU status and driver information

Once you have logged into your EC2 instance you need to verify if you are good to go. Check
the GPU driver status using the following command on the console:

nvidia-smi

It should give a similar output as the following:

[ec2-user@ip-172-31-25-183 ~]5 nvidia-smi
sat Oct 11 06:51:31 2025

| NVIDIA-SMI 580.95.05 Driver Version: 580.95.85
GPU Name Persistence-M - Disp.A | Volatile Uncorr. ECC
Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util Compute M.
MIG M.

@ Tesla T4 00000000:00:1E.0 Off

2T OMiB / 15360MiB

Processes:
GPU GI

Check if the GPU is detected at the hardware level

To confirm that the GPU hardware itself is visible to the operating system, use the Ispci
command. It lists all connected devices, and you can filter for NVIDIA entries like this:

[ec2-user@ip-172-31-25-183 ~]$ 1lspci | grep -i nvidia
00:1e.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4]
(rev al)

This confirms that the system has detected the NVIDIA Tesla T4 GPU.
At this point, you know that your hardware, driver, and CUDA runtime are all aligned. The
environment is ready for compiling and running CUDA programs.

Connecting Your EC2 Instance to GitHub Using SSH

I usually keep all my code in Guthub and then close the code from the Github repository and use
it. First, I need to add my RSA key of the EC2 instance to my Github.

Add the key to your GitHub account

Go to GitHub — Settings — SSH and GPG keys
Click New SSH key

Give it a name, e.g., AWS EC2 CUDA

Paste the public key you just copied

Click Add SSH key

Clone the CUDA repository

Clone the CUDA code from the repository: GPU_CUDA_PROGRAMMING

Compiling and Running Your CUDA Program

Your CUDA source code is now on the EC2 instance. The next step is to compile it using
NVIDIA’s CUDA compiler (nvcc). After that, run it on the GPU. The Deep Learning Base AMI
with Single CUDA image already comes with nvcc pre-installed. You can compile directly
without any extra setup. To compile the CUDA source file, use:

[ec2-user@ip-172-31-25-183 GPU_CUDA PROGRAMMING]$ nvcc
vector_add compare.cu -o vector_add compare

nvcc warning : Support for offline compilation for architectures
prior to '_75' will be removed in a future release (Use

-Wno-deprecated-gpu-targets to suppress warning).
[ec2-user@ip-172-31-25-183 GPU_CUDA_PROGRAMMING]$

When you compile your CUDA program using nvcc, the NVIDIA CUDA compiler translates the
CPU (host) and GPU (device) code. It creates an executable that can run directly on the GPU. To
supress the warning above you may like to use the following command:

nvcc -Wno-deprecated-gpu-targets vector_add compare.cu -o
vector_add _compare

Running the CUDA Program

After compiling your CUDA program successfully, you can now run it directly on the GPU.
This is where you’ll see the difference between CPU and GPU execution times in action.
Run the program using:

[ec2-user@ip-172-31-25-183 GPU_CUDA_PROGRAMMING]$
./vector_add_compare

Vector size: 16777216 elements (64 MB per array)
CPU Execution Time: 124 ms

GPU Execution Time: ©.820064 ms

Result Verification: PASS

Sample value check: C[@] = 3

Speedup = 151.208x faster on GPU

	
	Answer
	Comparative Analysis: Distributed, Grid, Cluster, Utility, and Cloud Computing
	Defining Characteristics
	Architectural Differences
	Typical Use Cases
	
	Conceptual Overlaps
	Distinctions

	Answer
	
	Test Setup
	Compilation of the sequential program
	Running the sequential program
	Screenshot
	Analysis of the sequential output
	Parallel Implementation
	Compiling the Parallel Program
	Running the parallel program
	Screenshot
	Analysis of the parallel output
	Speedup Canculation
	Efficiency Calculation
	

	Controlling the Number of Threads in OpenMP Execution
	Screenshot
	Visualisation
	Sequential vs Parallel execution time - Comparative Chart
	Performance Variation with Number of Threads
	
	Comparison of Average Execution Time
	Screenshots

	Answer
	
	NVIDIA GPU Configuration on AWS EC2
	Running the CUDA Program
	Screenshots
	
	Code Walkthrough
	Objective
	Host and Device Setup
	Initialising Input Data
	Memory Allocation on GPU and Data Transfer
	CUDA Kernel for Vector Addition
	Copying Results Back and Verifying Correctness
	CPU Version for Comparison
	Measuring Execution Time
	Cleanup and Memory Deallocation

	Comparison of Execution Time and Performance Discussion

	Answer
	Writing the Hello World program in C
	Screenshot
	Compile the program in Linux
	Screenshot
	Running Hello World program on the console
	Running hello world program with strace
	Screenshot
	Key System Calls and Their Roles
	Program Launch – execve()
	Memory Setup – brk() and mmap()
	Loading Libraries – openat(), read(), close()
	Sending Output – write()
	Clean Exit – exit_group()

	The Role of OS
	Process Creation
	I/O Operations
	Program Termination

	
	Appendix
	Setting up the NVIDIA CUDA environment in AWS
	Launching the Right EC2 Instance
	Instance Name
	Select the Application and OS Image (AMI)
	Architecture
	Instance Type
	Key Pair
	Network Settings
	Log in to the EC2
	Check GPU status and driver information
	Check if the GPU is detected at the hardware level
	Connecting Your EC2 Instance to GitHub Using SSH
	Add the key to your GitHub account
	Clone the CUDA repository
	Compiling and Running Your CUDA Program
	Running the CUDA Program

