
Cloud Infrastructure Past 
Paper

Q&A



Q.1. A processor executes 10 million (10⁷) instructions for a given program. The processor 
has an average CPI of 2.5 and operates at a clock frequency of 2 GHz. Calculate the total 
execution time of the program in milliseconds.



Q.2. Differentiate between ‘Computer Architecture & Computer Organization’ by taking 
appropriate example.

Answer:

● Computer Architecture refers to the conceptual design and functional behaviour of a computer 
system as seen by a programmer. It defines the instruction set architecture (ISA), addressing 
modes, data types, and system design principles. Example: The x86 and ARM instruction sets 
are part of computer architecture.

● Computer Organization deals with the implementation details of how the architecture is realized 
in hardware, such as control signals, microprogramming, ALU design, pipeline structure, and 
memory hierarchy. Example: The difference between Intel Core i7 (superscalar, pipelined) and ARM 
Cortex-A processors lies in organization.



Q.3. Explain the correlation between response time and waiting time in process scheduling. 
Additionally, draw their relationship using a Venn diagram.

Answer:

● Response Time is the time interval from when a request is submitted until the first response is 
produced. It indicates system interactivity.

● Waiting Time is the total time a process spends in the ready queue, waiting to be executed.

Correlation: Waiting time directly contributes to response time. Specifically,

Response Time= Waiting Time + Time for first CPU burst

● Waiting time (part of total turnaround).
● Response time (includes waiting time + initial CPU allocation).



Q.4. Explain the role and physical location of each level of cache (L1, L2, L3) in the memory hierarchy. 
Discuss the potential advantages and disadvantages of adding additional levels of cache (e.g., L4) to the 
memory hierarchy. Consider factors such as (not limiting to) access time, power consumption, and cost in 
your answer.

Answer:

● L1 (on-core, closest): Smallest and fastest; typically split I-cache and D-cache per core; minimises load/use 
latency for the current instructions and data.

● L2 (on-core or per-cluster): Bigger and slightly slower than L1; buffers working sets that don’t fit in L1; still 
private (often) to a core or a small cluster.

● L3 (last-level cache, on-die, shared): Much larger, higher latency; shared across cores on the socket; 
reduces traffic to DRAM and mitigates inter-core interference.

Adding an L4 (e.g., on-package eDRAM or stacked SRAM):

● Pros: Fewer DRAM accesses; better throughput for memory-intensive or multiprogrammed workloads; can 
smooth NUMA effects.

● Cons: Higher access latency than L3; extra power and area cost; design complexity (coherence, inclusion 
policy); diminishing returns if DRAM is fast (DDR5/HBM) or workloads are cache-unfriendly.

Trade-off summary: More cache levels usually improve hit rates and performance, but each added level increases 
latency, silicon area, leakage power, and cost—so value depends on workload mix and platform power/area 
budgets.



Q.5. If mapping techniques such as direct mapping, associative mapping, and 
set-associative mapping are applied to L3 cache and RAM, explain how is data handled 
when it resides in L1 or L2 cache?

Answer:
When data is already present in L1 or L2 cache, the CPU serves it directly from there. In this case, L3 
and RAM mapping techniques (direct, associative, or set-associative) are not involved at all, since 
mapping only comes into play when the processor must fetch from lower levels after an L1/L2 miss.

The handling of data across levels depends on the Last-Level Cache (LLC, usually L3) inclusion policy:

● Inclusive L3: Everything in L1/L2 must also exist in L3. Evicting a line from L3 forces 
back-invalidations from L1/L2.

● Exclusive L3: Data resides in only one cache at a time. Lines evicted from L2 are placed in L3, 
avoiding duplication.

● Non-Inclusive/Non-Exclusive (NI/NE): No strict duplication rules—data may or may not appear in 
multiple levels simultaneously.

In all cases, the key point is that an L1/L2 hit bypasses L3 and RAM entirely. L3 mapping only matters 
when the CPU cannot find the requested data in the upper levels.



Q.6. Discuss the importance of Instruction Set Architecture (ISA) in processor design and 
software compatibility. Consider the elements such as system performance, portability, and 
power efficiency etc. Also, provide a real-world example where ISA selection played a 
crucial role in technological advancement or transition?

Answer:
The Instruction Set Architecture (ISA) defines the set of instructions, data types, registers, addressing modes, 
and memory model that a processor supports. It serves as the interface between hardware and software, shaping 
how programs are written and executed.

Its importance lies in several aspects:

● System Performance: The richness and efficiency of the instruction set influence how effectively compilers 
can translate programs into machine code.

● Portability and Compatibility: Since software is compiled against the ISA, applications can run on any 
processor that implements the same ISA, regardless of internal hardware design.

● Power Efficiency: The complexity of an ISA impacts how the processor is built. A simpler ISA often allows 
for more energy-efficient implementations.

Real-world example: A notable case is the adoption of ARM (RISC) ISA in mobile devices and later in cloud 
servers. ARM’s emphasis on energy efficiency and scalability made it the dominant choice for smartphones and 
has enabled its transition into laptops and cloud platforms (e.g., Apple’s M-series chips, AWS Graviton instances). 
This shift highlights how ISA selection can drive both technological advancement and market adoption.



Q.7. Why are RISC-based processors increasingly being adopted by public cloud 
providers? Also, list the challenges in complete adoption of RISC for cloud workloads? 

Why cloud providers are moving to RISC (like ARM):

● Better efficiency: RISC chips give more performance per watt, lowering power and cooling costs in 
massive data centres.

● Custom silicon freedom (via ARM’s licensing): Cloud providers can design their own processors 
(e.g., AWS Graviton) and add features such as higher memory bandwidth or accelerators.

● Cheaper to run: Efficiency translates into lower cost per instance for customers, while still 
delivering good performance for scale-out workloads.

● Ecosystem ready: Compilers, Linux, containers, and cloud platforms already support ARM, making 
adoption practical.

Challenges to full adoption:

● Legacy software: Many enterprise apps are still x86-only, so they need porting or emulation.
● Tuning gap: Workloads optimised for Intel/AMD vector units (AVX) may require re-optimisation for 

ARM’s NEON/SVE.
● Mixed environments: Running both x86 and ARM creates extra complexity in builds, testing, and 

deployment.
● Feature parity: Some specialised hardware extensions and vendor ecosystems remain stronger on 

x86.



Q.8. In a modern operating system, three types of schedulers—Long-Term, Medium-Term, 
and Short-Term—work together to optimize CPU and memory usage. Explain the role of 
each scheduler in process management, highlighting their impact on CPU scheduling, 
memory allocation, and system performance.
Also, considering a cloud-based workload management system where user applications are 
executed in virtualized environments.

● How should each scheduler be designed to efficiently allocate resources and handle 
dynamic workload variations?



Answer:

Long-Term (job) scheduler: Controls how many jobs enter the system, regulating multiprogramming 
and CPU/memory usage.

● In AWS terms: This is like Auto Scaling Groups or EKS cluster autoscaling, which decide when 
to launch or stop new EC2 instances/containers based on demand.

Medium-Term scheduler: Manages memory residency by suspending/resuming processes. In 
virtualized clouds, it handles memory ballooning, live migration, and overcommit.

● In AWS terms: This is like EC2 live migration (to handle hardware faults or balance workloads) or 
pause/resume in ECS/Fargate, where workloads can be shifted around to optimise utilisation.

Short-Term (CPU) scheduler: Picks which process (or VM vCPU) runs next, affecting latency, 
throughput, and fairness.

● In AWS terms: This is similar to how EC2 vCPUs are time-sliced between tenants, enforced with 
cgroups/quotas under the hypervisor, ensuring fair CPU shares while meeting SLAs.



Cloud-oriented design guidelines:

● Long-Term Scheduler: Should decide when new workloads are admitted. In the cloud this means:
○ Only let in as many VMs or containers as the system can handle (SLA-aware admission).
○ Scale out or scale in automatically when demand changes.
○ Place workloads carefully on NUMA nodes/servers for efficiency.
○ Keep extra capacity ready for sudden demand spikes.

● Medium-Term Scheduler: Should adjust workloads dynamically to avoid bottlenecks. In the cloud 
this means:

○ Suspend or resume workloads quickly if memory is tight.
○ Live migrate VMs away from hot spots.
○ Use memory optimisation tricks (ballooning, page sharing).
○ Preempt or pause lower-priority workloads (e.g., spot instances) if needed.

● Short-Term Scheduler: Should share CPU fairly and responsively. In the cloud this means:
○ Allocate CPU time fairly across tenants (quotas/weights).
○ Give different latency guarantees for interactive vs batch jobs.
○ Be aware of NUMA/cache layout for performance.
○ Co-schedule I/O with CPU to avoid stalls.


