Cloud Infrastructure
Numerical & Like

Numericals and Fundamentals

Relation Between Clock and Instruction Cycle

o F_.. = oscillator frequency or clock frequency.
° Fcy = instruction cycle frequency. How many full instruction cycles (fetch—decode—execute—store)
are executed per second.

° Tcy = instruction cycle period = 1/Fcy.The time required to complete one full instruction cycle.

Typically, F__ =F___+ N, where N is an implementation-dependent divider.
cy osc

Timing Characteristics

One instruction cycle requires multiple clock ticks (depending on architecture).
Simple instructions may require 1 cycle.
e Memory access or complex arithmetic may require multiple cycles.

e Performance = Fcy x average instructions per cycle (IPC).

Amdahl’s Law

Programs have two parts:

e A serial portion that must run on a single
processor.

e A parallel portion that can be divided
among multiple processors.

Adding processors only helps the parallel
portion. The serial portion takes the same
time no matter how many processors are
available.

Overall speedup is limited by the serial
portion. If even a small fraction of the program
is serial, it puts a hard cap on the maximum
possible improvement.

1

Speedup = -7+ %

f = fraction of program that can be parallelised
N = number of processors
(1-f) = serial part, unchanged by parallelism

Problem

A program has been updated with 80% parallelizable code and 20% sequential

code. The parallelization is done using 6 processors. What is the speedup
in percentage?

Parallel fraction (f): 80% = 0.8 Speedun = 1
Sequential fraction (1 - f): 20% = 0.2 R P
Processors (N): 6 N
Speedup: ~3.0

Review of Processor Operations

Every operation a processor performs — fetching an instruction, decoding
it, loading data, and executing arithmetic or logic — is driven by a system
clock. The clock generates pulses that act as the rhythm for the processor.
Each operation starts with a clock pulse, and the overall speed of the
processor is tied to how frequently these pulses occur, measured in Hertz

£\ Rising or

Falling or

(HZ)- +A ol Leading Edge Traling Edge
Y
Clock Cycles and Speed ampinace | | ™ |
. — 1 _ZT o
For example, a 1 GHz (10°) processor generates one billion pulses per M

second. Each pulse represents a clock cycle, and the time between pulses
is called the cycle period.

The higher the clock speed, the more operations the processor can start
each second.

However, performance isn’t only about clock speed — memory access
delays, pipeline efficiency, and instruction parallelism also determine how
much'workeggts done per cycle.

Clock Signal: The Processor’s Timing Pulse

Amplitude (+A to 0):

This is the voltage difference of the clock signal. +A is the
"high" state, and 0 is the "low" state. The processor
recognises these two states as the basis for timing.

Positive Half: b
The duration when the clock signal is high (+A). This is
often when certain operations (like latching data) are
triggered.

0

Negative Half:
The duration when the clock signal is low (0). Some
circuits are designed to react during this phase.

Pulse Width:
The time the signal stays in the high state during one
cycle. It is a portion of the total cycle.

p'fg‘:’: ‘ Rising or Falling or
- j Leading Edge Trailing Edge
) Positive Negative
Amplitude Half Half
e e ’
One Cycle or T 2T
Period

Clock Signal: The Processor’s Timing Pulse

Rising Edge (Leading Edge):

The transition point where the signal goes from low (0) to

high (+A). Many digital circuits, including processors, start

new operations on this edge.

Falling Edge (Trailing Edge): "
The transition where the signal drops from high (+A) back to
low (0). Other circuits may use this edge to trigger their
operations.

One Cycle (Period, T):
A full cycle is the combination of one positive half and one
negative half. It is the repeating unit of the clock signal.

e Measured in time (seconds).
e The frequency is the inverse of this period (f = 1/T).
For example, if T = 1 nanosecond, f = 1 GHz.

Pulse

idih | Rising or Falling or
- | Leading Edge Trailing Edge
-~ \
) Positive Negative
Ampinde Half Half
One Cycle or 1 2T
Period i
7

 Time Period . Clock Cycle :

1 : 1 P 1 : High 2 4 : @

i o 0 0 0 Low r 0 0 :
- -l gFaIIing Edge

lnstmctiofn FETCH

Instruction EXEGUTE

N N = R S e AR i e W —

Understanding Clock Speed and Cycle Time

A 1-GHz processor means the chip gets 1 billion clock pulses every second.

e The number of pulses per second is called the clock speed.
e Each single pulse is a clock cycle.
e The tiny gap between two pulses is the cycle time.

Cycles Per Instruction (CPI)

Instruction count (I) — total number of instructions executed by
the program.

CPI. — cycles per instruction for a specific instruction type i.
l. — number of instructions of type /.

CPI (average) — weighted average of cycles per instruction across
the program.

Cycle time (1) — duration of one clock cycle (7/).

Execution time formula:
Execution Time=(Instruction Count)x(Average CPI)x(Cycle Time)

Program runtime is influenced by (1) number of instructions, (2) how
many cycles instructions need, and (3) clock speed.

CPI] = Zizl(CPL X Il)
I,
T = L. CPT %
10

MIPS (Millions of Instructions Per Second)

Definition: MIPS measures how many million

instructions a processor executes per second.

Variables:

e | — number of instructions executed.
e [— total execution time.

e [— processor clock frequency.

e CPIl — average cycles per instruction.

Formula meaning:

e Higher clock speed (f) increases MIPS.
e Lower CPIl improves MIPS (fewer cycles
per instruction).

MIPS = L.

f

TxlOG:

CEI »x 1P

11

Case Study

The difference in RAM speed (4400 MT/s vs. 6000 MT/s). Whether changing the RAM from
4400 MT/s to 6000 MT/s will do?

e Simply upgrading RAM from 4400 MT/s to 6000 MT/s may not work unless both the
motherboard and the processor support the higher speed.

e Motherboard dependency: The memory controller on the motherboard (chipset + BIOS) must
allow 6000 MT/s. If it only supports up to 4400 MT/s, faster RAM will downclock to 4400 MT/s.

e Processor dependency: Modern CPUs have integrated memory controllers. If the CPU only
supports up to 4800 or 5200 MT/s, installing 6000 MT/s RAM won’t run at full speed.

e Changing RAM alone is not enough. You may need to change the motherboard, processor,
or both, depending on their supported memory speeds.

12

Case Study

How does the difference in RAM speed (4400 MT/s vs.6000 MT/s) influence the overall systémé
performance in tasks such as gaming, content creation, and Al/ML workloads, given that all
other hardware components are identical?

Impact of RAM Speed on System Performance

e Gaming:
o Most modern games are more dependent on GPU and CPU performance.
o Faster RAM (6000 MT/s vs. 4400 MT/s) can improve minimum frame rates and reduce stuttering, but average FPS gains

are often modest (~3-10%).
e Content Creation (e.g., video editing, 3D rendering):
o Applications that handle large datasets (like 4K/8K video timelines or huge texture assets) benefit more from higher
memory bandwidth.
o You may see noticeable performance improvements in export times and real-time previews.
e AI/ML Workloads:
o These workloads often involve large matrix multiplications and memory-bound operations.
o Higher RAM speed can give significant boosts in fraining throughput and data preprocessing speed.
e Overall:
o Faster RAM gives diminishing returns if the workload is CPU/GPU bound.
o Workloads that are memory-intensive benefit more.
o Performance uplift varies from minor (gaming) to moderate/significant (Al/ML, heavy content creation).

13

Case Study

An organization intends to procure a high-performance server to meet its extensive
processing and GPU requirements (currently around 500 GB). Also, a separate redundance
storage solution is required. The server will be utilized to create virtual machines (VMs) that
will be allocated to various associated organizations, with the flexibility to reallocate them
based on evolving configuration needs. Additionally, the organization seeks a scalable
solution that allows for future infrastructure expansion while maintaining the core system
configuration. What would be the most suitable server solution to meet these requirements?

14

Key Requirements in the Problem

High Processing and GPU Power

e The organization has heavy computational needs (around 500 GB of GPU memory capacity).
e This suggests workloads like AI/ML, big data processing, or GPU-intensive simulations.

Separate Redundant Storage

e They don't just want performance, but also reliability.
e Redundant storage means a system like RAID arrays, SAN (Storage Area Network), or NAS with

redundancy to avoid data loss.
Virtual Machines (VMs)

e The server must support virtualization.
e VMs will be allocated to different organizations (multi-tenancy).
e There should be flexibility to reallocate VMs dynamically as needs change.

Scalability

e The solution should scale in the future without redesigning the entire infrastructure.

onfiguration (CPU, GPU, memory structure) should remain intact while allowing easy expansion.

15

Average Memory Access Time (AMAT)

The performance of the memory system can be summarised with the formula:
AMAT = Hit time + (Miss rate x Miss penalty)
This averages the fast accesses (hits) with the slow ones (misses).

e Alower AMAT means better performance.

e Because miss penalties are usually far larger than hit times, the best ways to reduce AMAT are to:
o Lower the miss rate (by increasing cache size or improving replacement policies).
o Reduce the miss penalty (for example, by using multi-level caches).

Performance Example

Suppose:

33% of instructions are data accesses.

Cache hit ratio = 97% — Miss rate = 3% (0.03).
Hit time = 1 cycle.

Miss penalty = 20 cycles.

Step 1: Compute AMAT for data accesses

AMAT_data = Hit time + (Miss rate x Miss penalty)
=1+ (0.03 x 20)
=1+ 0.6 =1.6 cycles

Step 2: Combine with overall workload

e Data accesses = 33% of instructions — cost = 0.33 x 1.6 = 0.528
e Otherinstructions (67%) — cost = 0.67 x 1 = 0.67

So, AMAT overall = 0.528 + 0.67 = 1.198 cycles

This men average, each memory access effectively takes about 1.2 cycles, thanks to the high hit ratio.

lead

Stack Architecture Example

A*B-(A+C*B)

e Rule e No need to name registers explicitly.
® Abinary operation (mul, add, sub) pops the top two e Operations always use the top of the stack.
values, performs the operation, and pushes the result e Instruction sequence is longer because of
pack repeated push/pop.
push A [A]
push B [B,A]

m! [AB] A C B B*C AtB*Cresult
push A [A,A'B] L j: ARSI TAIC A A*B reSUt
push C [C,A A*B] A*B | A A*Bii oo

push B [B,C,A,A*B] A*B

mul [C*B,A,A*B]

add [A+C*B,A*B]

sub [A*B - (A+C*B)]

X

Accumulator Architecture: Rules

Rule:

One accumulator register is the main working area for all arithmetic operations.
Binary operations (like add A, sub A, mul A, div A) always use:

e The value in the accumulator and
e The value from memory (operand A).
e Resultis stored back in the accumulator.

To save intermediate results, you use store X.
To bring a value from memory into the accumulator, use load X.

19

Example:A*B - (A+ C *B)

load B —» Acc=B

mulC —-Acc=B*C

addA - Acc=A+(B*C)

store D — Save (A+ B * C) into D (for later use)
load A - Acc = A

mulB —-Acc=A*B

subD -Acc=(A*B)-(A+B*C)

NOoO oA WN =~

Final result in Accumulator=A*B - (A+ C * B)

20

Question

A 2 word instruction is stored in memory at an address designated by the
symbol W. The address field of instruction (stored at W +1) is designated by
symbol Y. The operand used during the execution of the instruction is stored
at an address symbolized by Z. An index register contains the value X. State
how Z is calculated for different addressing modes.

We are given a two-word instruction stored in memory starting at address W. The first word contains the
opcode, and the second word (at W+1) holds the address field, denoted as Y. The actual operand needed
during execution is located at some effective address Z. Depending on the addressing mode, Z is computed
differently. An index register holds a value X, which is used in the indexed mode. The problem asks us to
express how Z is calculated under direct, indirect, relative, and indexed addressing modes.

21

Answer

How Z is Calculated as the following:

e Direct addressing: The operand is directly at the addressY. - Z =Y
e Indirect addressing: The operand’s address is found in memory atY. — Z = M[Y]

e Relative addressing: The operand’s address is given relative to the program counter (next instruction at
W+2). - Z =Y + (W+2)

e Indexed addressing: The operand’s address is obtained by adding the index registertoY. - Z =Y + X

22

Question

An instruction is stored at location 300 with its address field at location
301. The address field has the value 400. A processor register R1 contains the
number 200. Evaluate the effective address i1if the addressing mode of the
instruction is (a) direct; (b) immediate; (c) relative; (d) register indirect;
(e) index with R1 as the index register.

The problem is about effective address calculation under different addressing modes.

1. The instruction itself is stored at memory location 300.

2. lts address field (the part that may contain the operand or an address) is stored at location 301.

3. This address field has the value 400. Depending on the addressing mode, this "400" may be treated
as an actual memory address, an immediate constant, or combined with other values.

4. A processor register R1 is also given, which currently contains the value 200. In some addressing
modes (like indexed), this register will be added to the address field.

The task: For each addressing mode—direct, immediate, relative, register indirect, and index with R1—you
must work out how the effective address (EA) is computed.

23

The Effective Address (EA) is the actual memory address where the operand is located (except in
immediate mode, where the operand is part of the instruction itself).

(a) Direct addressing

In direct addressing, the address field itself gives the memory location of the operand. No extra calculation
is required.

Here, address field = 400 — EA = 400.

So the operand will be fetched from memory location 400.

(b) Immediate addressing

In immediate addressing, the address field does not represent a memory location at all; it is the operand
value itself.

Here, address field = 400 — operand = 400.

So the processor uses 400 directly as data, and there is no EA to compute.

(c) Relative (PC-relative) addressing

In relative addressing, the operand’s effective address is obtained by adding the displacement in the
address field to the Program Counter (PC) of the next instruction.

Here, PC = 302 (since current instruction occupies 300-301) — EA =302 + 400 = 702.

So the operand will be fetched from memory location 702.

24

(d) Register indirect addressing

In register indirect, the register itself contains the memory address of the operand. The instruction specifies
the register, not the address.

Here, register R1 = 200 — EA = 200.

So the operand will be fetched from memory location 200.

(e) Indexed addressing (with R1)

In indexed mode, the effective address is obtained by adding the contents of an index register to the
address field.

Here, address field = 400 and R1 =200 — EA =400 + 200 = 600.

So the operand will be fetched from memory location 600.

25

