Cache and Main Memory Structure

Line Memory
Number Tag Block address
0 0
1 1
2 2 Block 0
. 3 (K words)
]
e P —
c-1
Block Length
(K Words) .
(a) Cache .
*
Block M—1
2"-1
Word
Length
(b) Main memory

BITS Pilani, Pilani Campus

Cache Read Operation

START

Receive address
RA from CPU

I=block

containing RA
in cache?

Fetch A word
and deliver
to CPU

h

Access main
memory for block
containing RA

Allocate cache
line for main
memory block

i

Load main
memaory block
into cache line

BITS Pilani, Pilani Campus

Typical Cache Organization

Processor

Address
> [
Address
buffer
Control Control
. ontro R Cache ontro
Data
buffer
o P %
Data

System Bus

BITS Pilani, Pilani Campus

Elements of Cache Design

Cache Addresses
Logical
Physical
Cache Size
Mapping Function
Direct
Associative
Set Associative
Replacement Algorithm
Least recently used (LRU)

First in first out (FIFO)
Least frequently used (LFU)

Random

Write Policy
Write through
Write back

Line Size
Number of caches

Single or two level
Unified or split

BITS Pilani, Pilani Campus

What is a Cache?

« A cache allows for fast accesses to a subset of a larger data
store

* Your web browser’s cache gives you fast access to pages you

visited recently
» faster because it’s stored locally
» subset because the web won’t fit on your disk

 The memory cache gives the processor fast access to memory

that it used recently

« faster because it’s usually located on the CPU chip
« subset because the cache is smaller than main memory

BITS Pilani, Pilani Campus

Cache Contents?

 When do we put something in the cache?
* When it is used for the first time

* When do we overwrite something in the cache?
 When we need the space in the cache for some other entry
« All of memory won’t fit on the CPU chip so not every location in
memory can be cached

BITS Pilani, Pilani Campus

A Simple Cache Design

» (Caches are divided into blocks, which may be of various sizes.
— The number of blocks in a cache is usually a power of 2.

— For now we’ll say that each block contains one byte. This won’t take
advantage of spatial locality, but we’ll do that next time.

= Here is an example cache with eight blocks, each holding one byte.

Block
index 8-bit data

000
001
010
011
100
101
110
111

BITS Pilani, Pilani Campus

Important Questions

,p 1. When we copy a block of data from main memory to
the cache, where exactly should we put it?

. 2. How can we tell if a word is already in the cache, or if
it has to be fetched from main memory first?

3. Eventually, the small cache memory might fill up. To
load a new block from main RAM, we’d have to replace
one of the existing blocks in the cache... which one?

4. How can write operations be handled by the memory
system?

= Questions 1 and 2 are related—we have to know where the data is placed
if we ever hope to find it again later!

BITS Pilani, Pilani Campus

Where Should we put Data in Cache

= Adirect-mapped cache is the simplest approach: each main memory
address maps to exactly one cache block.

= For example, on the right Memory
is a 16-byte main memory Address
and a 4-byte cache (four

1-byte blocks). (1)

= Memory locations 0, 4, 8 2
and 12 all map to cache 3
block O. :

= Addresses 1, 5, 9and 13 6
map to cache block 1, etc. 7

: 8

= How can we compute this 9
mapping? 10

11

12

13

14

15

BITS Pilani, Pilani Campus

It’s all Divisions

= One way to figure out which cache block a particular memory address
should go to is to use the mod (remainder) operator.

» |f the cache contains 2k Memory
blocks, then the data at Address
memory address i would

0

go to cache block index 1
2

i mod 2k 3

4

= For instance, with the 5
four-block cache here, 6
address 14 would map ;
to cache block 2. 5
14 mod4 =2 1?

12

13

14

15

BITS Pilani, Pilani Campus

...... or Least Significant Bits

= An equivalent way to find the placement of a memory address in the
cache is to look at the least significant k bits of the address.

= With our four-byte cache

. Memory
we would inspect the two Address
least significant bits of 0000
our memory addresses. 0001

= Again, you can see that 0010
address 14 (1110 in binary) 0011
0100

maps to cache block 2 0101
(10 in binary). 0110

» Taking the least k bits of 0111
a binary value is the same 1000

as computing that value 18%
mod 2k, 1011
1100

1101
1110
1111

BITS Pilani, Pilani Campus

How can we find Data in Cache?

= The second question was how to determine whether or not the data
we’re interested in is already stored in the cache.

= |f we want to read memory memory
address i, we can use the Address

mod trick to determine 0
which cache block would 1
contain i. :

= But other addresses might i
also map to the same cache 5
block. How can we 6
distinguish between them? /

. 8

= For instance, cache block 9
2 could contain data from 10
addresses 2, 6, 10 or 14. 11

12

13

14

15

BITS Pilani, Pilani Campus

Adding Tags

= We need to add tags to the cache, which supply the rest of the address
bits to let us distinguish between different memory locations that map to
the same cache block.

0000
0001
0010
0011

0100
0101 Index Tag Data

0110 00 00
0111 01 7?
1000 10 01
1001 11 01
1010
1011
1100
1101

1110
1111

BITS Pilani, Pilani Campus

Figuring out what’s Inside the Cache

= Now we can tell exactly which addresses of main memory are stored in
the cache, by concatenating the cache block tags with the block indices.

Main memory
Index Tag Data address in cache block
00 00 > 00+ 00 = 0000
01 11 > 11+01=1101
10 01 > 01+10=0110
11 01 > 01+ 11=0111

BITS Pilani, Pilani Campus

One more detail: the Valid Bit

= When started, the cache is empty and does not contain valid data.
= We should account for this by adding a valid bit for each cache block.
— When the system is initialized, all the valid bits are set to 0.

— When data is loaded into a particular cache block, the corresponding
valid bit is set to 1.

Valid Main memory
Index Bit Tag Data address in cache block
00 1 00 — 00 + 00 = 0000
01 0 11 —_— Invalid
10 0 01 — 7
11 1 01 e m

= S0, the cache contains more than just copies of the data in memory; it
also has bits to help us find data within the cache and verify its validity.

BITS Pilani, Pilani Campus

What Happens on a Cache Hit

= When the CPU tries to read from memory, the address will be sent to a
cache controller.

— The lowest k bits of the address will index a block in the cache.

— If the block is valid and the tag matches the upper (m - k) bits of the
m-bit address, then that data will be sent to the CPU.

= Here is a diagram of a 32-bit memory address and a 2'9-byte cache.

Address (32 bits) Index Valid

Tag Data

0

22

-

10

-

Index

\
v
W N =

To CPU

1022

1023

Tag

Hit

)
L/

BITS Pilani, Pilani Campus

What Happens on a Cache Miss

= The delays that we’ve been assuming for memories (e.g., 2ns) are really
assuming cache hits.

— If our CPU implementations accessed main memory directly, their
cycle times would have to be much larger.

— Instead we assume that most memory accesses will be cache hits,
which allows us to use a shorter cycle time.

= However, a much slower main memory access is needed on a cache miss.
The simplest thing to do is to stall the pipeline until the data from main
memory can be fetched (and also copied into the cache).

BITS Pilani, Pilani Campus

Loading a Block in the Cache

= After data is read from main memory, putting a copy of that data into the
cache is straightforward.

— The lowest k bits of the address specify a cache block.

— The upper (m - k) address bits are stored in the block’s tag field.
— The data from main memory is stored in the block’s data field.

— The valid bit is set to 1.

Address (32 bits) Index Valid Tag Data
0
1
Index 3
Tag
Data

BITS Pilani, Pilani Campus

What if the Cache Fills-up

= Qur third question was what to do if we run out of space in our cache, or
if we need to reuse a block for a different memory address.

= We answered this question implicitly on the last page!

— A miss causes a new block to be loaded into the cache, automatically
overwriting any previously stored data.

— This is a least recently used replacement policy, which assumes that
older data is less likely to be requested than newer data.

= We’ll see a few other policies next.

BITS Pilani, Pilani Campus

More Cache Organizations?

Now we’ll explore some alternate cache organizations.
— How can we take advantage of spatial locality too?
— How can we take advantage of temporal locality?
— How can we reduce the number of potential conflicts?

BITS Pilani, Pilani Campus

Principle of Locality of Reference

 Temporal locality - nearness in time
* Data being accessed now will probably be accessed again soon
* Useful data tends to continue to be useful

« Spatial locality - nearness in address
* Data near the data being accessed now will probably be needed soon
* Useful data is often accessed sequentially
* Memory accesses speed up by 9% annually
* |t's becoming harder and harder to keep these processors fed

BITS Pilani, Pilani Campus

	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 47
	Slide 48

