
Cache and Main Memory Structure 



Cache Read Operation



Typical Cache Organization



Cache Addresses 

 Logical 

 Physical 

Cache Size 
Mapping Function 

 Direct 

 Associative 

 Set Associative 

Replacement Algorithm 

 Least recently used (LRU) 

 First in first out (FIFO) 
 Least frequently used (LFU) 

 Random 

Write Policy 

 Write through 

 Write back 

Line Size 
Number of caches 

 Single or two level 

 Unified or split 

 

Elements of Cache Design



• A cache allows for fast accesses to a subset of a larger data

store

• Your web browser’s cache gives you fast access to pages you

visited recently
• faster because it’s stored locally

• subset because the web won’t fit on your disk

• The memory cache gives the processor fast access to memory

that it used recently
• faster because it’s usually located on the CPU chip

• subset because the cache is smaller than main memory

What is a Cache?



• When do we put something in the cache?
• When it is used for the first time

• When do we overwrite something in the cache?
• When we need the space in the cache for some other entry

• All of memory won’t fit on the CPU chip so not every location in 

memory can be cached

Cache Contents?



▪ Caches are divided into blocks, which may be of various sizes.

— The number of blocks in a cache is usually a power of 2.

— For now we’ll say that each block contains one byte. This won’t take

advantage of spatial locality, but we’ll do that next time.

▪ Here is an example cache with eight blocks, each holding one byte.

Block

index

000

001

010

011

100

101

110

111

8-bit data

A Simple Cache Design



1. When we copy a block of data from main memory to

the cache, where exactly should we put it?

2. How can we tell if a word is already in the cache, or if 

it has to be fetched from main memory first?

3. Eventually, the small cache memory might fill up. To 

load a new block from main RAM, we’d have to replace 

one of the existing blocks in the cache... which one?

4. How can write operations be handled by the memory 

system?

▪ Questions 1 and 2 are related—we have to know where the data is placed 

if we ever hope to find it again later!

Important Questions



▪ A direct-mapped cache is the simplest approach: each main memory 

address maps to exactly one cache block.

▪ For example, on the right

is a 16-byte main memory 

and a 4-byte cache (four 

1-byte blocks).

▪ Memory locations 0, 4, 8 

and 12 all map to cache 

block 0.

▪ Addresses 1, 5, 9 and 13 

map to cache block 1, etc.

▪ How can we compute this

mapping?
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Where Should we put Data in Cache



▪ One way to figure out which cache block a particular memory address 

should go to is to use the mod (remainder) operator.

▪ If the cache contains 2k

blocks, then the data at

memory address i would

go to cache block index

i mod 2k

▪ For instance, with the

four-block cache here,

address 14 would map

to cache block 2.

14 mod 4 = 2
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It’s all Divisions



▪ An equivalent way to find the placement of a memory address in the 

cache is to look at the least significant k bits of the address.

▪ With our four-byte cache

we would inspect the two 

least significant bits of 

our memory addresses.

▪ Again, you can see that 

address 14 (1110 in binary) 

maps to cache block 2

(10 in binary).

▪ Taking the least k bits of 

a binary value is the same 

as computing that value 

mod 2k.
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……or Least Significant Bits



▪ The second question was how to determine whether or not the data 

we’re interested in is already stored in the cache.

▪ If we want to read memory 

address i, we can use the 

mod trick to determine 

which cache block would 

contain i.

▪ But other addresses might 

also map to the same cache 

block. How can we 

distinguish between them?

▪ For instance, cache block

2 could contain data from

addresses 2, 6, 10 or 14.
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How can we find Data in Cache?



▪ We need to add tags to the cache, which supply the rest of the address 

bits to let us distinguish between different memory locations that map to 

the same cache block.
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Tag Data

Adding Tags



▪ Now we can tell exactly which addresses of main memory are stored in 

the cache, by concatenating the cache block tags with the block indices.
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00
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Tag Data

Main memory 

address in cache block

00 + 00 = 0000

11 + 01 = 1101

01 + 10 = 0110

01 + 11 = 0111

Figuring out what’s Inside the Cache



▪ When started, the cache is empty and does not contain valid data.

▪ We should account for this by adding a valid bit for each cache block.

— When the system is initialized, all the valid bits are set to 0.

— When data is loaded into a particular cache block, the corresponding

valid bit is set to 1.

▪ So, the cache contains more than just copies of the data in memory; it

also has bits to help us find data within the cache and verify its validity.
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One more detail: the Valid Bit



▪ When the CPU tries to read from memory, the address will be sent to a 

cache controller.

— The lowest k bits of the address will index a block in the cache.

— If the block is valid and the tag matches the upper (m - k) bits of the

m-bit address, then that data will be sent to the CPU.

▪ Here is a diagram of a 32-bit memory address and a 210-byte cache.
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What Happens on a Cache Hit



▪ The delays that we’ve been assuming for memories (e.g., 2ns) are really 

assuming cache hits.

— If our CPU implementations accessed main memory directly, their

cycle times would have to be much larger.

— Instead we assume that most memory accesses will be cache hits, 

which allows us to use a shorter cycle time.

▪ However, a much slower main memory access is needed on a cache miss. 

The simplest thing to do is to stall the pipeline until the data from main 

memory can be fetched (and also copied into the cache).

What Happens on a Cache Miss



▪ After data is read from main memory, putting a copy of that data into the 

cache is straightforward.

— The lowest k bits of the address specify a cache block.

— The upper (m - k) address bits are stored in the block’s tag field.

— The data from main memory is stored in the block’s data field.

— The valid bit is set to 1.
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Loading a Block in the Cache



▪ Our third question was what to do if we run out of space in our cache, or 

if we need to reuse a block for a different memory address.

▪ We answered this question implicitly on the last page!

— A miss causes a new block to be loaded into the cache, automatically

overwriting any previously stored data.

— This is a least recently used replacement policy, which assumes that 

older data is less likely to be requested than newer data.

▪ We’ll see a few other policies next.

What if the Cache Fills-up



Now we’ll explore some alternate cache organizations.

— How can we take advantage of spatial locality too?

— How can we take advantage of temporal locality?

— How can we reduce the number of potential conflicts?

More Cache Organizations?



Principle of Locality of Reference

• Temporal locality – nearness in time
• Data being accessed now will probably be accessed again soon
• Useful data tends to continue to be useful

• Spatial locality – nearness in address
• Data near the data being accessed now will probably be needed soon
• Useful data is often accessed sequentially
• Memory accesses speed up by 9% annually
• It’s becoming harder and harder to keep these processors fed
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