
Distributed Computing
Lesson 6



Message Ordering in Distributed Systems

● In a distributed system, messages travel 
independently through the network.

● To keep the system consistent, the order of 
messages matters just as much as the 
messages themselves.

● Example: If a replica receives “update x=5” 
before “read x,” everyone else should also see 
this order. Otherwise, results diverge.



Total Order

● Imagine you have several replicas of a single data item d.
● If updates arrive in different orders at different replicas, the replicas may disagree.
● Total order ensures all replicas see messages in the same order, regardless of whether the 

updates are causally related or not.
● Benefit:

○ Removes coherence and consistency problems.
○ Makes “read” operations simple (all replicas agree).
○ Improves fault tolerance (replicas can be queried interchangeably).

● In short: Total order = Everyone sees the same global sequence of events.



Example Setup 

● P1 sends a message m1 to the replicas 
(R1, R2, R3).

● P2 sends a message m2 to the replicas.
● There’s also a message m exchanged 

between P1 and P2 (maybe a coordination 
or trigger message).

Condition for Total Order

● In a distributed system, total order requires 
that all processes (or replicas) deliver 
messages in the same sequence.

● It doesn’t matter if m1 comes before m2, 
or m2 before m1.

● What matters is every replica must see the 
same order.



Example violation Scenario 1

The orders in which messages are received 
at the replicas are the following: 

R1: m2, m1

R2: m1, m2

R3: m1, m2

As the order of receiving the messages are 
not the same in each of these replicas it 
violates Total Order



Example satisfying Scenario 2

The orders in which messages are received 
at the replicas are the following: 

R1: m2, m1

R2: m2, m1

R3: m2, m1

As the order of receiving the messages are 
the same in each of these replicas it satisfies 
Total Order



Three-Phase Distributed Algorithm
Purpose

● Ensures all processes in a group see messages 
in the same order (total order).

● Also respects causal relations between 
messages (causal order).

● Works for closed groups (fixed set of 
processes).

Phase 1 – Send the message

● The sender wants to broadcast a message M.
● It tags the message with:

○ A unique ID (so there’s no confusion with 
other messages).

○ Its local timestamp (a first guess at 
ordering).

● Then it multicasts this message to all group 
members.

Phase 2 – Collect proposals

● Each receiver replies with a tentative proposed 
timestamp for when it could safely deliver the 
message to its application.

● The sender waits until all replies arrive. It then 
takes the maximum of these proposed 
timestamps to ensure no process delivers the 
message too early, and that maximum 
becomes the final agreed timestamp.

Phase 3 – Announce the final time

● The sender multicasts the final timestamp to all 
group members.

● Now everyone knows exactly when to deliver the 
message.



Nomenclature for multicast 

Single Source Single Group (SSSG) multicast.

● Single Source → There is exactly one 
sender (the process at the top).

● Single Group → That sender transmits 
messages to exactly one group of 
receivers (the three processes inside the 
box).

● This is the simplest multicast case: one 
sender, one group.

Example: A live video stream from a single 
sports broadcaster (source) sent only to 
subscribers of one sports channel (group).



Nomenclature for multicast 

Multiple Sources Single Group (MSSG):
Here, multiple senders (sources) multicast their 
messages to a single common group of 
receivers.

Example: In a collaborative chat room or a 
multiplayer game, several participants (sources) 
are all sending updates, and everyone in the 
same group receives them.

The challenge here is ensuring ordering and 
consistency of messages, since different 
sources can send concurrently.



Nomenclature for multicast 

Single Source Multiple Groups (SSMG):
 One sender transmits to more than one group 
of receivers, possibly with some overlap 
between groups.

Example: A news broadcaster (source) streams 
to two separate groups — one group subscribed 
to politics and another to business. Some users 
may belong to both groups and thus receive the 
stream twice.



Nomenclature for multicast 
Multiple Sources Multiple Groups (MSMG):
 In this setup, there are several senders (sources) 
and several receiver groups. Each source can 
multicast to one or more groups.

Example: Think of multiple news agencies 
(sources), each broadcasting different categories of 
news (sports, politics, finance). Subscribers 
(receivers) join the groups they are interested in. 
Some receivers may overlap across groups (e.g., 
someone who follows both sports and finance).

This is the most general and complex multicast 
model, since it must handle both multiple senders 
and multiple groups simultaneously, with 
challenges in scalability, ordering, and delivery 
guarantees.



Classification of application-level multicast algorithms

Communication history-based algorithms

These use past communication to enforce ordering. They 
don’t track fixed groups, so they fit open-group multicasts. 
Example: Lamport’s algorithm, where scalar timestamps 
ensure a message is delivered only if no earlier time stamped 
message is pending.

Privilege-based algorithms
A token is passed among senders, and only the token-holder 
can multicast. The token carries the sequence number, 
ensuring receivers deliver in increasing order. This 
guarantees total and causal ordering but only in closed 
groups. The drawback is poor scalability since only one 
sender can multicast at a time.



Classification of application-level multicast algorithms

Moving sequencer algorithms
Here, special processes called sequencers are responsible for assigning 
sequence numbers. Senders multicast their messages to all sequencers. The 
sequencers circulate a token that carries the next sequence number and a list of 
already sequenced messages.

When a sequencer gets the token, it assigns sequence numbers to pending 
messages, sends them to destinations, updates the token, and passes it on.
Receivers then deliver messages strictly in order of these sequence numbers → 
guaranteeing total ordering.



Classification of application-level multicast algorithms

This diagram shows the Moving Sequencer Algorithm in action:

● Senders (top box) generate messages.
● These messages are sent to the Sequencers (middle box).
● Sequencers coordinate using a rotating token (dashed arrows). 

The token carries the next sequence number and history of already 
sequenced messages.

● The sequencer holding the token assigns sequence numbers to 
pending messages, then multicasts them to the Destinations 
(bottom box).

● Destinations deliver messages strictly in increasing sequence 
number order → ensuring total order across the system.

Senders → sequencers (with rotating token) → destinations 
(ordered delivery)



Classification of application-level multicast algorithms
Fixed Sequencer Algorithms 

A fixed sequencer algorithm uses a single sequencer process to assign 
sequence numbers to all multicast messages. This centralizes control and 
ensures total ordering, since every message passes through one sequencer.

Senders (top box): Multiple processes want to multicast their messages.

Fixed Sequencer (middle black dot):

● Every sender forwards its message to this sequencer.
● The sequencer assigns a sequence number to each incoming message 

(e.g., 1, 2, 3…).

Destinations (bottom box):

● The sequencer multicasts the message (now with a sequence number) to all 
destinations.

● Destinations deliver messages strictly in the order of these assigned 
sequence numbers.



Destination agreement algorithms

In this class of algorithms, the destinations themselves decide the delivery order. They first receive 
the messages (with limited ordering info like timestamps), then exchange information to agree on a 
consistent order before delivering.

Destinations do not just accept the sender’s order; they coordinate among themselves.

Two main approaches:

1. Timestamp-based: Use timestamps attached to messages to decide order.
2. Consensus-based: Use agreement protocols (like majority voting or Paxos-style consensus) to 

settle on the order.

The advantage is decentralization (no single sequencer).

The downside is extra communication overhead, since receivers must interact to finalize the order.



Termination Detection

In distributed systems, a single problem is often solved collectively by many processes running on 
different machines. To make progress, these processes must cooperate and exchange messages.

A key question is: how do we know when the entire distributed computation has finished?

This is important because:

● Results can only be used once all parts of the computation are done.
● Many problems are broken into smaller subproblems. A new subproblem cannot begin until the 

previous one has fully completed.
● Without detecting completion correctly, processes may either stop too early (missing results) or wait 

forever (wasting resources).

Thus, a fundamental challenge in distributed systems is deciding whether a distributed computation has 
terminated.



Local vs Global Termination

● Locally terminated: A process has finished its part of the work and will remain idle unless it 
receives a new message.

● Globally terminated: Every process in the system is locally terminated and there are no 
messages in transit between processes.

The difficulty comes from the fact that:

● No single process has a complete view of the entire system.
● There is no global clock or global state to check directly.

 So, termination must be inferred using carefully designed algorithms.



Two Computations Running in Parallel

Whenever we try to detect termination, we are effectively running two computations at once:

1. The underlying computation – the actual work being done (e.g., solving a distributed 
problem).

2. The termination detection algorithm – the extra mechanism that checks whether the work 
is finished.

● Messages used for the actual work are called basic messages.
● Messages used by the detection algorithm are called control messages.



Requirements of Termination Detection Algorithms

Any termination detection (TD) algorithm must satisfy:

1. Non-intrusiveness – it should not freeze or indefinitely delay the actual computation. The 
system must continue working while detection runs in the background.

2. No new infrastructure – it should not require creating new communication channels beyond 
what the system already uses.

Termination detection is about ensuring that all processes are done and no messages are flying 
around in a distributed system. Since no process can see the global state directly, specialized 
algorithms use local states, message exchanges, and control mechanisms to infer global 
termination safely and efficiently.



Main Termination Detection Approaches

1. Using Distributed Snapshots

● A snapshot records the state of processes and messages in channels at one moment.
● Since termination is a stable property (once true, it stays true), a snapshot taken after 

termination will capture it.
● How it works:

○ When a process becomes idle, it requests everyone to take a local snapshot.
○ If all processes agree and take snapshots, we combine them into a global snapshot.
○ If all processes are idle and no messages are in transit → termination detected.



Main Termination Detection Approaches

2. Weight Throwing Method

● Here, a special controlling agent manages the computation.
● The agent starts with weight = 1; processes start with weight = 0.
● When it activates a process, it gives some of its weight along with the task.
● As messages flow, weight is split and carried around.
● When processes finish, they return their weight to the controller.
● Termination is detected when the controller regains weight = 1 (meaning all work is 

done, no weight is left outside).



Main Termination Detection Approaches

3. Spanning-Tree Based Detection

● Processes are arranged in a spanning tree.
● Leaf nodes report to their parents when they finish.
● Parents wait until both they and all their children are done, then report upward.
● Eventually, the root gets reports from everyone and declares termination.
● To ensure correctness, two waves of signals (inward and outward) keep repeating until the 

system stabilises.


