Cloud Infrastructure

Instruction Set Architecture (ISA)

ISA: It is the interface between software and hardware. It tells exactly what instructions the processor
understands and how it executes them.

What ISA specifies:

The data types supported.

The registers available.

The memory model (addressing, virtual memory).
The complete instruction set.

The 1/O model.

Instruction Set Architecture (ISA)

Instruction categories (8085 example):

Data transfer
Arithmetic
Logical
Branching
Control

Key point:

e |ISA defines what operations are possible.
e Microarchitecture defines how they are carried out in hardware.

Components of an ISA

An Instruction Set Architecture (ISA) defines how a processor looks to a programmer. Key parts include:

Storage cells: general and special-purpose registers, memory cells, and I/O-related storage.
e Machine instruction set: all the operations the machine can perform, involving register transfers,
fetch/execute cycle, etc.

e Instruction format: layout of bits within an instruction (opcode, operands).
e Fetch—execute cycle: the sequence of steps for executing instructions (fetch, decode, execute).

Every instruction must define four things:

Operation — opcode (e.g., add, load, branch).
Operands — where to find them (registers, memory, 1/O).
Result location — where to store the output.

Next instruction — usually via program counter (PC), but branches can change this.

B wnh =

Instruction Types

Data movement (load, store)
Arithmetic and logic (ALU) (add, sub, shift, etc.)

Branch (control flow) (conditional/unconditional jumps, altering sequence).

Evolution of Instruction Sets

Three main architectures historically:

1. Stack architecture — operands come from a stack (push/pop).
2. Accumulator architecture — one special register (accumulator) holds results.

3. General-purpose register (GPR) architecture — multiple registers, most flexible; can be
register—register, register—-memory, or memory—memory.

Stack Architecture Example

A*B-(A+C*B)

e Stack-based execution means operands are
pushed onto the stack, and operations (like
mul, add, sub) use the top elements of the
stack automatically.

e Steps for the expression A*B - (A + C * B):

1. push A, push B, mul — computes

e No need to name registers explicitly.
Operations always use the top of the stack.

e Instruction sequence is longer because of
repeated push/pop.

A* B.
2. push A, push C, push B, mul, A R A3 A _C B B*C AiB*Cresult
. bd [y [l TA*B T A C A IA*B |
add — computes A + (C * B). AFBIA AR L
3. sub — subtracts the second result from A*B

the first.

