
Cloud Infrastructure



Instruction Set Architecture (ISA) 
ISA: It is the interface between software and hardware. It tells exactly what instructions the processor 
understands and how it executes them.

What ISA specifies:

● The data types supported.
● The registers available.
● The memory model (addressing, virtual memory).
● The complete instruction set.
● The I/O model.



Instruction Set Architecture (ISA) 
Instruction categories (8085 example):

● Data transfer
● Arithmetic
● Logical
● Branching
● Control

Key point:

● ISA defines what operations are possible.
● Microarchitecture defines how they are carried out in hardware.



Components of an ISA
An Instruction Set Architecture (ISA) defines how a processor looks to a programmer. Key parts include:

● Storage cells: general and special-purpose registers, memory cells, and I/O-related storage.
● Machine instruction set: all the operations the machine can perform, involving register transfers, 

fetch/execute cycle, etc.
● Instruction format: layout of bits within an instruction (opcode, operands).
● Fetch–execute cycle: the sequence of steps for executing instructions (fetch, decode, execute).

Every instruction must define four things:

1. Operation → opcode (e.g., add, load, branch).
2. Operands → where to find them (registers, memory, I/O).
3. Result location → where to store the output.
4. Next instruction → usually via program counter (PC), but branches can change this.



Instruction Types
Data movement (load, store)

Arithmetic and logic (ALU) (add, sub, shift, etc.)

Branch (control flow) (conditional/unconditional jumps, altering sequence).



Evolution of Instruction Sets
Three main architectures historically:

1. Stack architecture → operands come from a stack (push/pop).

2. Accumulator architecture → one special register (accumulator) holds results.

3. General-purpose register (GPR) architecture → multiple registers, most flexible; can be 
register–register, register–memory, or memory–memory.



Stack Architecture Example

A * B – (A + C * B)

● Stack-based execution means operands are 
pushed onto the stack, and operations (like 
mul, add, sub) use the top elements of the 
stack automatically.

● Steps for the expression A * B – (A + C * B):
1. push A, push B, mul → computes 

A * B.
2. push A, push C, push B, mul, 

add → computes A + (C * B).
3. sub → subtracts the second result from 

the first.

● No need to name registers explicitly.
● Operations always use the top of the stack.
● Instruction sequence is longer because of 

repeated push/pop.


