
Q.1. A JSON file for a movie streaming platform is provided below.

Write the REST API endpoints (based on the Open API specification) for all the
CRUD operations, assuming that the API is hosted at
https://movies.com/api/streaming. Provide the request body where appropriate.
[5 marks]

JSON File:

{​
 "streaming": {​
 "name": "StreamFlix",​
 "location": "Online",​
 "movies": [​
 {​
 "title": "Inception",​
 "director": {​
 "name": "Christopher Nolan",​
 "birth_year": 1970,​
 "nationality": "British-American"​
 },​
 "genre": {​
 "name": "Sci-Fi",​
 "description": "Science Fiction Movies"​
 },​
 "price": 3.99,​
 "stock": 100,​
 "id": 1​
 }​
]​
 }​
}

Fundamentals (Additional Reading)

1.​ Top-level container​
The whole document is a single JSON object with one key, "streaming". Its
value is another object that holds platform metadata and the catalogue.

2.​ Platform metadata​
Inside "streaming", the keys "name" and "location" describe the streaming
platform itself.

●​ "name": "StreamFlix" is the platform’s brand.
●​ "location": "Online" indicates it’s an online-only service (not a

physical shop).
3.​ Movie catalogue​

“movies": [] is an array. Each element is one movie object in the catalogue
and is enclosed by braces {}. Arrays allow zero or more movies to be listed.

4.​ Movie object shape​
Each movie contains several fields:​
"title": the film’s name.

"director": a nested object with details about the director.

"genre": a nested object describing the category.

"price": rental or purchase price (decimal number).

"stock": how many units/licenses are available (integer, non-negative).

"id": a unique integer identifier for the movie.

5.​ Director sub-object​
 "director" has:

"name": director’s full name.

"birth_year": four-digit year (integer).

"nationality": free-text descriptor.

6.​ Genre sub-object​
 "genre" has:

"name": genre label (e.g., “Sci-Fi”).

"description": human-readable explanation of the genre.

7.​ Example record​
Example array has one movie: Inception with its director (Christopher
Nolan), genre (“Sci-Fi”), price 3.99, stock 100, and id 1.​

8.​ Typical constraints (implied, not encoded)

id should be unique per movie.

stock should be ≥ 0.

price should be ≥ 0.00 with two decimal places if treated as currency.

Director/genre are embedded here; they could be separate resources in a
larger system, but this JSON models them inline within each movie.

Answer

To implement CRUD operations for the movies resource in the given streaming
platform, the endpoints can be designed as follows:

1. Create (POST)

●​ Endpoint:​
 POST https://movies.com/api/streaming/movies

●​ Request Body:

{​
 "title": "Interstellar",​
 "director": {​
 "name": "Christopher Nolan",​
 "birth_year": 1970,​
 "nationality": "British-American"​
 },​
 "genre": {​
 "name": "Sci-Fi",​
 "description": "Space Exploration and Science Fiction"​
 },​
 "price": 4.99,​
 "stock": 50​

}

Just copy and paste the section under /movies within the braces {} and change
the attributes as shown above.

2. Read (GET)

●​ Get all movies:​
 GET https://movies.com/api/streaming/movies

●​ Get a single movie by ID:​
 GET https://movies.com/api/streaming/movies/{id}

Example:

GET https://movies.com/api/streaming/movies/1

3. Update (PUT/PATCH)

●​ Endpoint:​
 PUT https://movies.com/api/streaming/movies/{id}

●​ Request Body (example – updating stock and price):

{​
 "price": 2.99,​
 "stock": 120​
}

4. Delete (DELETE)

●​ Endpoint:​
 DELETE https://movies.com/api/streaming/movies/{id}​
 Example: DELETE https://movies.com/api/streaming/movies/1

Q.2 Evaluate the following statements (agree/disagree) with a brief
justification. [Answer should contain a few bullet points of no more
than 2–4 lines]. [4 marks]​
 a. A microservices-based architecture is always more efficient than

monolithic architecture.​
 b. Continuous deployment eliminates the need for manual
intervention in the release process.

Answer

●​ a. Disagree. Microservices can improve scalability and team autonomy, but
add network overhead, operational complexity, and distributed failure
modes. For small, cohesive systems, a monolith can be faster to develop,
simpler to operate, and more efficient in resource use. So it will depend on
the type of application. In some cases microservices may be a better choice,
in others monolithic may be a better option.

●​ b. Disagree. Continuous deployment automates delivery to production, but
guardrails still need human input: defining approval policies, handling
rollbacks for ambiguous failures, and overseeing compliance/security
exceptions. Not every change is risk-free or fully automatable.

Additional Notes

a. Microservices vs Monolith

●​ Large-scale e-commerce (e.g., Amazon, Netflix, Uber) – These companies
are documented case studies of adopting microservices because their systems
need high scalability, independent team ownership, and resilience. They
explicitly moved away from monoliths due to scale and complexity.

●​ Small internal HR portal / university attendance system – Industry and
academic sources agree that for small, cohesive systems with limited scale,
monoliths are preferable. They are easier to build, deploy, and maintain when
complexity is low. This is a commonly cited best practice in software
architecture literature.

b. Continuous Deployment and Human Guardrails

●​ Financial applications – In regulated domains like banking and trading,
manual approvals for production deployment are mandated (e.g., PCI DSS,

SOX compliance). Continuous deployment pipelines may exist, but final
pushes often require human approval.

●​ Ambiguous failures (performance regressions) – This is a well-documented
limitation of automated CD. Automated tests may pass while a system
experiences subtle latency or throughput degradation in production. Human
monitoring and intervention are required.

●​ Healthcare systems – HIPAA and other healthcare compliance frameworks
often demand human review for certain types of changes, especially when
patient data or safety is involved.

Q.3 Differentiate between Edge computing, Fog computing, and Cloud
computing. Provide practical examples for all three approaches. [6
marks]

Answer

Edge Computing

Edge computing means the processing happens right where the data is generated,
or very close to it — for example, on sensors, devices, or gateways. The main benefit
is ultra-low latency, because the data doesn’t have to travel far, and reduced
bandwidth, since raw streams don’t need to be sent to distant servers. This is useful
when quick, local decisions are needed or where connectivity is patchy.

Example: A factory robot arm uses an on-device vision model to stop instantly if a
hazard is detected. Similarly, a retail security camera can count customers and
trigger alerts without waiting for a cloud response.

Fog Computing

Fog computing sits in the middle, between the edge and the cloud. Instead of every
device working alone or everything being sent to the cloud, fog nodes (like local
servers, micro-data centers, or ISP points) collect data from many edge devices.
They can preprocess, filter, or coordinate the data before passing on summaries to
the cloud. This reduces cloud load and allows for faster regional decisions.

Example: In a smart city, roadside units aggregate traffic data from multiple
intersections. They can adjust local traffic lights in real time, while sending
aggregated trends to the cloud for broader city-wide traffic planning.

Cloud Computing

Cloud computing is centralized, relying on hyperscale data centers with massive
compute and storage capacity. It excels at heavy workloads, such as analytics
across millions of records, large-scale machine learning training, or long-term data
archiving. While it provides scalability and global reach, the trade-off is higher
latency for real-time needs.

Example: A retailer uses cloud platforms to train demand-forecasting models, run
recommendation engines, and maintain a historical data lake covering all regions.

Q.4 'QuickLearn' is a new application that offers short tutorials on
various subjects. The platform supports categories like technology,
arts, and business, which can be filtered by difficulty levels. Users can
search tutorials, add new content, view others' contributions, rate or
comment on the tutorials, and delete their own uploads. Discuss the
role of DevOps and AIOps in supporting this application. [4 marks]

Answer

DevOps for QuickLearn

DevOps ensures that new features on QuickLearn—like category filters, search,
uploads, ratings, and comments—are delivered quickly and reliably. Continuous
Integration and Continuous Deployment (CI/CD) pipelines automate testing so that
features such as search accuracy, user permissions, or comment posting work
correctly before going live. Infrastructure as Code tools (like Terraform) allow the
entire setup—web front-end, APIs, and databases—to be deployed in a consistent
and repeatable way. DevOps also brings observability: logging, metrics, and tracing
help monitor system health, such as error rates or slow responses. Techniques like
blue-green or canary deployments make updates safer, allowing new features to be
rolled out gradually with the option to roll back instantly if issues arise. Security is

baked into the process, from code scanning to secrets management, ensuring the
platform is both fast and safe.

AIOps for QuickLearn

AIOps builds on this by using artificial intelligence to monitor and optimise
operations. It analyses logs, metrics, and events to spot unusual patterns—for
example, a sudden spike in search delays, upload failures, or bursts of inappropriate
comments. It can automatically connect issues across services (like database
slowdowns affecting search) and even trigger fixes, such as scaling up servers or
clearing caches. AIOps also predicts usage peaks to help with capacity planning and
filters out false alarms by recognising patterns, reducing the workload on
engineers. For troubleshooting, it compares current incidents with past ones to
speed up root-cause analysis. Beyond keeping the platform stable, AIOps can also
enhance user experience by supporting smarter moderation and recommendations,
separating genuine engagement signals from system health data.

Q.5 Briefly explain each API approach and identify
suitable scenarios: SOAP, REST, GraphQL, WebSocket,
gRPC, Server-Sent Events. [6 marks]

Answer

When we look at SOAP, we are dealing with the most formal and heavyweight API
approach. It uses XML, defines strict contracts through WSDL, and includes built-in
standards for things like security, reliability, and transactions. This makes it reliable
in enterprise or financial systems where guaranteed message delivery and formal
protocols are essential, but it also makes it slower and harder to work with
compared to newer approaches.

Use case: Banking systems, payment gateways, or legacy integrations.

Sample request (XML over HTTP):

<soap:Envelope>​

 <soap:Body>​
 <GetBalance><AccountId>12345</AccountId></GetBalance>​
 </soap:Body>​
</soap:Envelope>

REST simplifies things by being resource-oriented and stateless, using standard
HTTP verbs like GET, POST, PUT, and DELETE. It usually communicates with JSON,
supports caching, and is easy to scale. That is why it is the most common choice for
modern web APIs such as e-commerce platforms. However, one drawback is that
REST can sometimes return either more data than the client needs or not enough,
leading to inefficient communication.

Use case: CRUD operations in e-commerce, social media, or content platforms.

Sample request:

GET /api/users/42​
Response: { "id": 42, "name": "Alice" }

GraphQL was designed to solve that problem. Instead of letting the server decide
what data to send, the client specifies exactly what it needs, and all of it can come
in a single request. This reduces over-fetching and under-fetching, which is
especially useful for mobile or web applications where efficiency matters. The
trade-off is that GraphQL requires a well-defined schema and more complexity on
the server side compared to REST.

Use case: Apps with varying UI needs like social networks or dashboards.

Sample request (query):

{​
 user(id: 42) { name, posts { title } }​
}

WebSocket is quite different because it moves away from the request–response
model entirely. It creates a persistent, full-duplex connection between client and
server, meaning both can send data to each other in real time. This makes
WebSocket the natural choice for live chats, collaborative tools, or online games.

Unlike REST or GraphQL, which are request-driven, WebSocket is event-driven,
and unlike Server-Sent Events, it supports two-way communication.

Use case: Real-time chat apps, multiplayer games, collaborative editing.

Sample message (over open socket):

Client → { "message": "Hello" }​
Server → { "reply": "Hi there!" }

gRPC focuses on high-performance service-to-service communication. It uses
HTTP/2 along with Protocol Buffers, giving it compact, binary messages that are
strongly typed. This makes it much faster than REST or GraphQL and a good fit for
internal microservices or edge-to-core communication pipelines where speed and
strict contracts are critical. It is less suitable for public-facing APIs but excellent for
backend systems.

Use case: Microservice communication in large platforms.

Sample (IDL definition):

rpc GetUser(UserRequest) returns (UserResponse);

Finally, Server-Sent Events (SSE) are a lighter way to provide real-time updates.
They establish a one-way channel from the server to the client, which is enough
when the client only needs to listen for updates, such as stock prices, live scores, or
notifications. SSE is simpler than WebSockets but only supports one-way
communication, so the choice depends on whether bidirectional interaction is
needed.

Use case: Live dashboards, notifications, live scores.

Sample event stream:

data: { "score": "2-1" }

Q.6 A retail organization wants to develop a predictive model to

determine the likelihood of product returns. The dataset includes

purchase details, customer feedback, and product ratings. Apply the
CRISP-DM methodology to analyze this problem and explain each stage
in detail. [5 marks]

Answer

1) Business Understanding. Define the objective: predict the probability a purchase
will be returned within the return window to reduce reverse-logistics cost and
improve customer experience. Establish KPIs: AUC/PR-AUC for discrimination,
calibration (Brier score), expected cost saved, and operational metrics (fewer
no-fault returns). Document constraints (fairness across segments, regulatory
handling of customer feedback text, explanation requirements for agents).

2) Data Understanding. Inventory available data: purchase details (SKU, price,
discount, channel, delivery time), customer profile (tenure, prior returns), product
attributes (category, size/fit notes), and unstructured customer feedback/ratings.
Explore target leakage (e.g., using post-return workflows), class imbalance (typically
low positive rate), seasonality (festive returns), and channel effects (online vs store).
Perform EDA: return rates by category/size, sentiment vs returns, delivery-delay
correlations.

3) Data Preparation. Handle missing values (impute or “missing” category),
normalise/encode categorical features (category, brand), derive features (discount
depth, size mismatches, delivery SLA breach, sentiment scores from feedback,
recent return streak). Address imbalance with stratified splits, class-weighted loss,
or balanced sampling. Partition data temporally to respect ordering (train on past
months, validate on later months).

4) Modelling. Start with explainable baselines (regularised logistic regression), then
tree-based ensembles (Gradient Boosting/Random Forest/XGBoost). Include
calibrated probabilities (Platt/Isotonic) for decision thresholds tied to costs
(shipping, handling, restocking). Consider text features via TF-IDF or embeddings
for feedback; compare models with and without text to quantify lift.

5) Evaluation. Use AUC/PR-AUC plus business metrics: expected cost saving at
chosen threshold, confusion matrix by category/size, calibration plots, and fairness
slices (e.g., new vs loyal customers). Perform back-testing across months and stress

tests for peak seasons. Validate operationally: do high-risk orders benefit from size
guidance or extra QC?

6) Deployment. Serve the model behind an API with feature store parity to training
transformations. Monitor drift (input and prediction), calibration, and return-rate
lift. Implement human-in-the-loop for edge cases (e.g., very high value orders). Plan
for retraining cadence (monthly/quarterly), A/B tests on interventions
(pre-purchase fit prompts, post-purchase follow-ups), and clear rollback
procedures.

Additional Reading

CRISP-DM: An Overview

CRISP-DM stands for Cross-Industry Standard Process for Data Mining. It is the
most widely used, structured methodology for tackling data mining and predictive
modelling projects. The key idea is that data science projects are not just about
building models; they require understanding the business, preparing the data,
validating outcomes, and ensuring deployment fits real-world needs.

The methodology has six phases, which are usually iterative rather than strictly
linear.

1. Business Understanding

The first stage focuses on what the organisation wants to achieve. This means
translating business objectives into data science goals. For example: reduce
customer churn, predict fraud, or classify returns. Constraints, success criteria, and
risks are also identified here.

●​ Output: A clear project charter with objectives, success metrics, and
constraints.

2. Data Understanding

Next, you gather and explore the data. This involves identifying what data sources
are available, assessing data quality, and exploring data distributions, correlations,

or anomalies. You also look for possible target leakage and begin forming
hypotheses about patterns in the data.

●​ Output: A description of the data, quality reports, and initial insights through
exploratory data analysis (EDA).

3. Data Preparation

This is where most of the effort in data projects lies. Data is cleaned, transformed,
and engineered into a suitable format for modelling. Tasks may include handling
missing values, encoding categorical variables, normalising numerical features,
feature extraction, and partitioning datasets into training, validation, and test sets.

●​ Output: A modelling-ready dataset with selected features and appropriate
splits.

4. Modelling

Here, you choose and apply machine learning algorithms. You may try multiple
models (e.g., regression, decision trees, neural networks), tune hyperparameters,
and experiment with different feature subsets. Importantly, modelling is iterative:
the choice of model might highlight new data requirements, sending you back to
the preparation phase.

●​ Output: One or more candidate models, with performance metrics on
validation data.

5. Evaluation

At this stage, you step back and check if the model actually meets the business
objectives defined earlier. It’s not just about accuracy or AUC; you must consider
business KPIs, cost-benefit trade-offs, fairness, and interpretability. If the model
isn’t fit for purpose, you may refine it or even revisit earlier stages.

●​ Output: A final model evaluation report, including technical and business
measures of success.

6. Deployment

Finally, the model is integrated into business processes. This could mean deploying
a web service, creating batch scoring jobs, or providing decision-support tools.
Monitoring is critical: you track model drift, accuracy degradation, and business
impact. Plans for retraining and retracking results are also established.

●​ Output: A production system with monitoring, maintenance plan, and
documentation.

	Fundamentals (Additional Reading)
	Answer
	1. Create (POST)
	2. Read (GET)
	3. Update (PUT/PATCH)
	4. Delete (DELETE)
	Answer

	Additional Notes
	a. Microservices vs Monolith
	b. Continuous Deployment and Human Guardrails
	Answer

	Edge Computing
	Fog Computing
	Cloud Computing
	Answer

	DevOps for QuickLearn
	AIOps for QuickLearn
	Q.5 Briefly explain each API approach and identify suitable scenarios: SOAP, REST, GraphQL, WebSocket, gRPC, Server-Sent Events. [6 marks]
	Answer
	Answer

	Additional Reading
	CRISP-DM: An Overview
	1. Business Understanding
	2. Data Understanding
	3. Data Preparation
	4. Modelling
	5. Evaluation
	6. Deployment

