
API and REST Questions

Q1. Write RESTful API endpoints for managing customer
service profiles in a company adopting the 'API-First'
approach. Assume fields like id, name, age, and address, with
the domain name 'NextGenServices'.

Answer:

Start with the Base URL

In a RESTful design, resources are usually plural nouns. Here, the resource is
customers, and the company’s domain is given as NextGenServices. Following the
API-first approach, we design the base endpoint as:

https://api.nextgenservices.com/customers

This means every action on customer profiles will start from this root path.

Create (POST)

To create a new customer profile, we send data to the collection /customers using
the POST method. POST is used because we’re adding something new to the
collection.

POST /customers​
{​
 "name": "Alice Smith",​
 "age": 29,​
 "address": "123 Main St"​
}

Here, we don’t send the id because it will typically be generated by the system.

Read (GET)

Reading comes in two flavours in REST:

●​ All profiles → Use GET on the collection itself.

GET /customers

This would return a list of all customer profiles.

●​ Single profile → Use GET on a specific resource by appending its id.

GET /customers/{id}

Update (PUT or PATCH)

To change details of a customer:

●​ PUT replaces the whole resource.
●​ PATCH updates only part of it.​

Here, if we’re only updating age and address, PATCH is often more precise, but
PUT is acceptable too if we’re okay with replacing the full record.

PUT /customers/{id}​
{​
 "age": 30,​
 "address": "456 Oak Lane"​
}

Delete (DELETE)

Finally, removing a customer profile is done with the DELETE method on that
resource’s path:

DELETE /customers/{id}

For example: /customers/101 would delete the customer with ID 101.

Putting It All Together

●​ Create: POST /customers
●​ Read all: GET /customers
●​ Read one: GET /customers/{id}
●​ Update: PUT /customers/{id} (or PATCH /customers/{id})
●​ Delete: DELETE /customers/{id}

Q2. Provide RESTful API endpoints for a library system that
tracks books and their availability. Assume the system has
fields for title, author, category, and price.

Answer:​
Identify the resource

In REST, the first question is: what is the core resource we’re managing? Here, the
resource is clearly books, since we’re tracking their details (title, author,
category, price, and availability). That means our base URL should be:

https://api.library.com/books

Plural form (books) is used because the API manages a collection of book records.

Create a new book (POST)

If we want to add a new book, we are creating a fresh resource in the collection.​
 In REST, creation is done with POST on the collection endpoint:

POST /books​
{​
 "title": "Data Science 101",​
 "author": "Prof. Lee",​
 "category": "Education",​
 "price": 45.0​
}

Notice that the system will usually generate an id for the new book, so the client
only sends the descriptive fields.

Read (GET)

Now we think about retrieving data. REST supports two common patterns:

●​ All resources:

GET /books

Returns a list of all books, possibly with filters (like ?category=Education).

●​ A single resource:

GET /books/{id}

Update (PUT)

If a book’s details change (say, price or category), we need to update the resource.

●​ In REST, PUT replaces or updates the resource at the given ID.

PUT /books/{id}​
{​
 "price": 40.0,​
 "category": "Data"​
}

If only partial updates are needed, some APIs prefer PATCH, but PUT is the safe
default.

Delete (DELETE)

Finally, to remove a book record from the system, REST uses the DELETE method:

DELETE /books/{id}

For instance, DELETE /books/101 would remove the book with ID 101 from the
catalog.

Availability

Since the system needs to track whether a book is available or not, the simplest
RESTful way is to treat availability as just another field of the book resource. For
example, each book record will have something like:

{​
 "id": 101,​
 "title": "Data Science 101",​
 "author": "Prof. Lee",​
 "category": "Education",​
 "price": 45.0,​
 "available": true​
}

●​ When you GET a book: the API response shows whether the book is available.

Example:

{ "id": 101, "title": "Data Science 101", "available": true }

Here, available: true means the book can be borrowed.

●​ When you UPDATE (PUT/PATCH): you change that field to reflect the new
status.

Example: if the book is borrowed:

{ "available": false }

Later, when it’s returned, you update it back to true.

So instead of creating a separate “availability” endpoint, we embed it as part of the
book resource. That way, availability status always travels with the rest of the book’s
details.

Putting it all together

●​ Create a book: POST /books
●​ Get all books: GET /books
●​ Get one book: GET /books/{id}
●​ Update book: PUT /books/{id}
●​ Delete book: DELETE /books/{id}

Q3. Design APIs for a travel booking system that includes
CRUD operations for flights and hotels. Use the domain
name 'TravelMaster'.

Answer:​
Identify resources

The system manages two main resources: flights and hotels. In REST, each
resource gets its own collection endpoint, so we’ll have:

https://api.travelmaster.com/flights​
https://api.travelmaster.com/hotels

The domain name is given (TravelMaster), so all endpoints live under
api.travelmaster.com.

CRUD for Flights

Start with the resource

The main resource here is flights. In REST, resources are represented as nouns in
plural form, so we’ll use /flights as the base path.

Create a flight → POST /flights

●​ When we want to add a new flight, we’re not targeting a specific flight yet;
we’re asking the server to create one in the collection. That’s why we use
POST on /flights.

http://api.travelmaster.com

Example request

POST /flights​
{​
 "origin": "NYC",​
 "destination": "LHR",​
 "departAt": "2025-12-14T09:30:00Z",​
 "price": 540.00​
}

Here we don’t send an id, because the server will generate it.

Read flights → GET

Retrieving is always done with GET. We have two cases:

●​ To see all flights, use:

GET /flights

This could even support filters like ?origin=NYC&destination=LHR.

To see one specific flight, we need to tell the server which flight by including its id:

GET /flights/{id}

For example: GET /flights/2025.

Example response for a single flight might look like:

{​
 "id": 2025,​
 "origin": "NYC",​
 "destination": "LHR",​
 "departAt": "2025-12-14T09:30:00Z",​
 "price": 540.00​
}

Update a flight → PUT /flights/{id}

If the flight details change (say, departure time or price), we’re updating an existing
record. REST uses PUT when replacing or updating a specific resource.

Example request

PUT /flights/2025​
{​
 "origin": "NYC",​
 "destination": "LHR",​
 "departAt": "2025-12-14T10:00:00Z",​
 "price": 520.00​
}

Why include {id}? Because without it, the server wouldn’t know which flight to
update.

Delete a flight → DELETE /flights/{id}

To remove a flight from the system, we use DELETE on the specific resource:

DELETE /flights/2025

This tells the server to remove the record with ID 2025.

Putting it together

So the logic is:

●​ POST /flights → because we’re creating a new item in the collection.
●​ GET /flights → because we want the whole collection.
●​ GET /flights/{id} → because we want one item by its identifier.
●​ PUT /flights/{id} → because we want to modify one item.
●​ DELETE /flights/{id} → because we want to remove one item.

CRUD for Hotels​
Identify the resource

The resource is hotels. In REST we use a plural noun for the collection, so
everything hangs off:

/hotels

Create a hotel → POST /hotels

We’re adding a new hotel to the collection, so we use POST on the collection path.

Example request

POST /hotels​
Content-Type: application/json​
​
{​
 "name": "The Riverside Inn",​
 "city": "London",​
 "stars": 4,​
 "basePrice": 129.00,​
 "currency": "GBP"​
}

Typical response

HTTP/1.1 201 Created​
Location: /hotels/3107​
​
{​
 "id": 3107,​
 "name": "The Riverside Inn",​
 "city": "London",​
 "stars": 4,​
 "basePrice": 129.00,​
 "currency": "GBP"​
}

Read hotels → GET

Reading doesn’t change state, so we use GET. Two common cases:

●​ All hotels (optionally filterable):

GET /hotels

Single hotel by identifier:

GET /hotels/{id}

Example: GET /hotels/3107

Example single-hotel response

{​
 "id": 3107,​
 "name": "The Riverside Inn",​
 "city": "London",​
 "stars": 4,​
 "basePrice": 129.00,​
 "currency": "GBP"​
}

Update a hotel → PUT /hotels/{id} (or PATCH for partial)

We’re changing an existing record, so we target the specific resource with its {id}.

Full update with PUT
PUT /hotels/3107​
Content-Type: application/json​
​
{​
 "name": "The Riverside Inn",​
 "city": "London",​
 "stars": 5,​

 "basePrice": 149.00,​
 "currency": "GBP"​
}

Partial update with PATCH
PATCH /hotels/3107​
Content-Type: application/json​
​
{​
 "stars": 5,​
 "basePrice": 149.00​
}

Delete a hotel → DELETE /hotels/{id}

Removal of a specific record uses DELETE on its resource path:

DELETE /hotels/3107

Typical response

HTTP/1.1 204 No Content

Putting it together (Hotels)

●​ Create: POST /hotels
●​ Read all: GET /hotels
●​ Read one: GET /hotels/{id}
●​ Update: PUT /hotels/{id} (or PATCH /hotels/{id} for partial)
●​ Delete: DELETE /hotels/{id}

Q4. Write the API design for an e-commerce site with CRUD
operations for product catalog, user profiles, and orders.

Answer:​
Name the core resources

An e-commerce MVP revolves around three nouns: products, users, and orders.
These become first-class resources with their own collections and item endpoints:

●​ Products represent what can be bought.
●​ Users represent customers and their profiles.
●​ Orders represent purchases made by users.

Pick a clean base URL and versioning

Stable clients need stable URLs. Use a versioned base so future changes don’t break
existing apps:

Base URL: https://api.shoponline.com/v1​
Content-Type: application/json

Map CRUD semantics to HTTP verbs

CRUD fits naturally onto REST:

●​ Create → POST to a collection.
●​ Read → GET collection or single item.
●​ Update → PUT (replace) or PATCH (partial) on a single item.
●​ Delete → DELETE a single item.

Sketch the data models (so endpoints return something
useful)

Thinking in minimal but practical fields keeps the design coherent.

Product

{​
 "id": 202,​
 "sku": "TEE-BLK-XL",​
 "name": "Classic Tee",​
 "description": "Soft cotton T-shirt",​
 "price": 19.99,​
 "currency": "GBP",​
 "stock": 150,​
 "status": "active", // active | archived​
 "category_id": 12,​
 "images": ["https://.../p202-front.jpg"],​
 "created_at": "2025-09-01T10:20:30Z",​
 "updated_at": "2025-09-10T15:42:05Z"​
}

User

{​
 "id": 10,​
 "email": "alex@example.com",​
 "name": "Alex Green",​
 "phone": "+44 20 1234 5678",​
 "addresses": [​
 {​
 "id": 501,​
 "label": "Home",​
 "line1": "42 Green Rd",​
 "city": "London",​
 "postcode": "E1 6AN",​
 "country": "GB"​
 }​
],​
 "default_address_id": 501,​
 "created_at": "2025-08-30T08:00:00Z"​
}

Order

Orders are multi-item in real shops, so we model an array of items rather than a
single product_id. This is more flexible than the one-product example and still
easy to use.

{​
 "id": 9001,​
 "user_id": 10,​
 "status": "placed", // draft | placed | paid |

shipped | delivered | cancelled​
 "items": [​
 { "product_id": 202, "name": "Classic Tee", "unit_price": 19.99,

"quantity": 2, "subtotal": 39.98 },​
 { "product_id": 305, "name": "Logo Cap", "unit_price": 12.50,

"quantity": 1, "subtotal": 12.50 }​
],​
 "currency": "GBP",​
 "amounts": {​
 "items_total": 52.48,​
 "shipping_fee": 3.99,​
 "tax": 10.50,​
 "grand_total": 66.97​
 },​
 "shipping_address": { "line1": "42 Green Rd", "city": "London",

"postcode": "E1 6AN", "country": "GB" },​
 "created_at": "2025-09-13T09:05:00Z",​
 "updated_at": "2025-09-13T09:05:00Z"​
}

Write the endpoints (CRUD for each resource)

Products

GET /v1/products​
POST /v1/products​
GET /v1/products/{product_id}​
PUT /v1/products/{product_id}​
PATCH /v1/products/{product_id}​
DELETE /v1/products/{product_id} // typically "archive" in

commerce; you may soft-delete

Create example:

POST /v1/products​
{​
 "sku": "TEE-BLK-XL",​
 "name": "Classic Tee",​
 "description": "Soft cotton T-shirt",​
 "price": 19.99,​
 "currency": "GBP",​
 "stock": 150,​
 "status": "active",​
 "category_id": 12,​
 "images": ["https://.../p202-front.jpg"]​
}

Users

GET /v1/users // admin only​
POST /v1/users // sign-up​
GET /v1/users/{user_id} // self or admin​
PATCH /v1/users/{user_id} // self or admin​
DELETE /v1/users/{user_id} // admin (or GDPR erase

workflow)​
GET /v1/me // convenience: current user​
PATCH /v1/me​
GET /v1/me/orders // current user's orders

Update example:

PATCH /v1/me​
{ "name": "Alex G", "phone": "+44 20 1234 5678" }

Orders

GET /v1/orders // admin; users see only

their own with ?user_id=me​

POST /v1/orders // create an order​
GET /v1/orders/{order_id}​
PATCH /v1/orders/{order_id} // update permissible fields

(e.g., status by admin; address before shipping)​
DELETE /v1/orders/{order_id} // optional; often replaced

by explicit cancellation​
POST /v1/orders/{order_id}/cancel // domain-friendly way to

"delete"

Create example (idempotent):

POST /v1/orders​
Idempotency-Key: 5b8e1f1a-0b2a-4c21-9c8f-1f4eaa21b8aa​
{​
 "user_id": 10,​
 "items": [​
 { "product_id": 202, "quantity": 2 },​
 { "product_id": 305, "quantity": 1 }​
],​
 "shipping_address": {​
 "line1": "42 Green Rd",​
 "city": "London",​
 "postcode": "E1 6AN",​
 "country": "GB"​
 }

}

Response:

201 Created​
Location: /v1/orders/9001​
{​
 "id": 9001,​
 "status": "placed",​
 "user_id": 10,​
 "items": [​
 { "product_id": 202, "name": "Classic Tee", "unit_price": 19.99,

"quantity": 2, "subtotal": 39.98 },​

 { "product_id": 305, "name": "Logo Cap", "unit_price": 12.50,

"quantity": 1, "subtotal": 12.50 }​
],​
 "currency": "GBP",​
 "amounts": { "items_total": 52.48, "shipping_fee": 3.99, "tax":

10.50, "grand_total": 66.97 },​
 "shipping_address": { "line1": "42 Green Rd", "city": "London",

"postcode": "E1 6AN", "country": "GB" },​
 "created_at": "2025-09-13T09:05:00Z"​
}

	API and REST Questions
	Q1. Write RESTful API endpoints for managing customer service profiles in a company adopting the 'API-First' approach. Assume fields like id, name, age, and address, with the domain name 'NextGenServices'.
	Answer:
	Start with the Base URL
	Create (POST)
	Read (GET)
	Update (PUT or PATCH)
	Delete (DELETE)
	Putting It All Together
	Q2. Provide RESTful API endpoints for a library system that tracks books and their availability. Assume the system has fields for title, author, category, and price.
	Answer:​Identify the resource
	Create a new book (POST)
	Read (GET)
	Update (PUT)
	Delete (DELETE)
	Availability
	Putting it all together
	Q3. Design APIs for a travel booking system that includes CRUD operations for flights and hotels. Use the domain name 'TravelMaster'.
	Answer:​Identify resources
	CRUD for Flights
	Start with the resource
	Create a flight → POST /flights

	Read flights → GET
	Update a flight → PUT /flights/{id}
	Delete a flight → DELETE /flights/{id}
	Putting it together
	CRUD for Hotels​Identify the resource
	Create a hotel → POST /hotels
	Read hotels → GET
	Update a hotel → PUT /hotels/{id} (or PATCH for partial)
	Full update with PUT
	Partial update with PATCH
	Delete a hotel → DELETE /hotels/{id}
	Putting it together (Hotels)
	Q4. Write the API design for an e-commerce site with CRUD operations for product catalog, user profiles, and orders.
	Answer:​Name the core resources
	Pick a clean base URL and versioning
	Map CRUD semantics to HTTP verbs
	Sketch the data models (so endpoints return something useful)
	Write the endpoints (CRUD for each resource)
	Products

